别是石墨烯的 D 、 G 和 D+G( 也称 G') 峰 [ 19 ] ,这表 明两种样品都生成了高质量的石墨烯。其中 D 峰 是由于芳香环中 sp 2 碳网络扭曲使得碳原子发生 对称伸缩振动引起的 [ 20 ] ,用于衡量材料结构的无 序度,它的出现表明石墨烯的边缘较多或者含有 缺陷,这与 SEM 观察到的结果一致; G 峰是由 sp 2 碳原子间的拉伸振动引起的 [ 21 ] ; G' 峰也被称 为 2 D 峰,是双声子共振二阶拉曼峰,其强度与 石墨烯层数相关 [ 22 - 24 ] 。与 LIG 拉曼曲线相比, MnO 2 / LIG 在 472.6 cm −1 波段较强的峰值,对应于 Mn − O 的伸缩振动峰,证实了 MnO 2 的晶体结构。 XRD 测试结果表明, MnO 2 /LIG 在 2 θ =18.002° 、 28.268° 、 37.545° 、 49.954° 和 60.244° 处的特征峰分别对应 α - MnO 2 的 (200) 、 (310) 、 (211) 、 (411) 和 (521) 晶面 ( 图 4 b PDF#440141) , α -MnO 2 为隧道结构,可容 纳溶液中的阳离子 ( 如 Zn 2+ 、 Li + 、 Mg 2+ 、 Na + ) [ 21 ] 。 25.9° 和 44.8° 处的峰为 LIG 中 C 的特征衍射峰。
振动台位移。方法包括预脉冲、后脉冲、前后脉冲、直流消除和高通滤波器。预存配置文件包括 Bellcore Z1、Z2、Z3 和 Z4;正弦波;啁啾;突发正弦波等。可选择运行需要采样频率低于 120Hz 的配置文件。提供高达 64,000 个样本的大块大小。冲击响应谱分析可应用于任何输入时间信号以即时生成 SRS。SRS 类型包括最大-最大、主要、残差和复合。低频选项支持采样率低于几 Hz 的导入配置文件。可选择根据 ANSI S2.62-2009 和 STANAG 4549 从加速度测量计算伪速度冲击响应谱 (PVSRS)。
满足测试工程师的需求:便利性、性能、灵活性和安全性 LASER USB 是测试实验室的理想控制器,因为它集便利性、性能、灵活性和安全性于一体。它提供 24 位精度、宽控制动态范围和快速循环时间,为您最具挑战性的测试提供卓越的控制。LASER USB 也是满足您测试需求的高度灵活的解决方案,具有全功能控制和分析软件应用程序,可用于随机、扫频正弦、共振驻留、经典冲击、随机对随机、正弦对随机、冲击 SRS 和现场数据复制。峰度控制和疲劳监测等先进技术可缩短测试时间并提高产品的可靠性。一键式报告功能可快速轻松地为您的设计团队或客户创建全面的报告,特殊的活动报告允许您重新缩放、缩放或光标移动 Microsoft ® Word ® 报告文档中的任何数据图。
可能导致 PIO 的飞机动态特性 ...................................................................................... 35 A. 有效飞行器中的过度滞后(飞机加稳定性增强) ...................................................................... 35 1. 严重 PIO 中的飞行员动态特性 ............................................................................. 37 2. 良好飞行品质的控制原则 - 对飞行员补偿变化的容忍度 ............................................................................. 53 3. 航天飞机轨道器进近和着陆试验 ............................................................................. 60 4. F-8 数字电传操纵实验 - “确定的”滞后数据 ............................................................. 62 B. 不匹配的飞行员-飞机接口特性 ............................................................................. 64 C. 控制器速率限制 ............................................................................................. 68 D. 飞行器动态转换 ............................................................................................. 70 1. YF-12 PIO ......................................... 70 2. 1 英寸-38 PIO ......................................................... 71
简介 欢迎来到振动控制。本文档有两个目标。首先是向初学者介绍振动控制测试的用途和技术。其次是向您(无论是老手还是新手)提供在竞争中赢得销售所需的信息。什么是振动控制?振动测试的基础是振动激励的闭环控制,通常称为振动控制。假设您是一名典型的测试工程师,您的实验室已收到一个产品和一组规格书进行振动测试。要完成您的工作,您将需要三组硬件(见图 1):1) 激励组,由信号发生器(输出模块)、功率放大器和机电振动器组成,2) 反馈电路,由加速度计、一些信号调节和监控单元(输入模块)组成,3) 控制单元。如图所示,要执行测试,您需要将驱动信号从信号发生器发送到功率放大器,然后发送到振动器。振动器会摇动测试物品。控制加速度计可感测振动水平,并在输入模块中进行监控。然后,控制器对驱动信号进行必要的调整,以使振动水平符合测试规范。这种调整行为就是振动控制。图中控制单元显示为一个黑匣子,但它很可能是技术人员调整刻度盘和
齿轮噪声与振动——文献综述 Mats Åkerblom mats.akerblom@volvo.com Volvo Construction Equipment Components AB SE–631 85 瑞典埃斯基尔斯蒂纳 摘要 本文是对齿轮噪声与振动文献的综述。 它分为三个部分:“传动误差”、“动态模型”和“噪声与振动测量”。 传动误差 (TE) 被认为是齿轮噪声和振动的重要激励机制。 传动误差的定义是“输出齿轮的实际位置与齿轮传动完全共轭时其所处位置之间的差”。 由齿轮、轴、轴承和变速箱壳体组成的系统的动态模型对于理解和预测变速箱的动态行为很有用。 在通过实验研究齿轮噪声时,噪声和振动测量以及信号分析是重要的工具,因为齿轮会在特定频率下产生噪声,这与齿数和齿轮的转速有关。关键词:齿轮,噪声,振动,传动误差,动态模型。
振动器位移。方法包括预脉冲、后脉冲、前后脉冲、直流消除和高通滤波器。预存配置文件包括 Bellcore Z1、Z2、Z3 和 Z4;正弦波;啁啾;突发正弦波等。可以选择运行需要低于 120Hz 采样频率的配置文件。提供高达 64,000 个样本的大块大小。冲击响应谱分析可应用于任何输入时间信号以即时生成 SRS。SRS 类型包括最大-最大、主要、残差和复合。低频选项支持采样率低于几 Hz 的导入配置文件。可以选择根据 ANSI S2.62- 2009 和 STANAG 4549 从加速度测量计算伪速度冲击响应谱 (PVSRS)。
摘要。飞机起落架(ALG)的失效主要是由于振动疲劳引起的。其主要失效模式为疲劳断裂。目前,ALG的可靠性计算通常采用基于二元状态假设的应力强度干涉(SSI)模型。而实际情况是,强度随时间的推移而退化,失效与成功的界限模糊,二元状态假设与事实不符。针对这一问题,本文采用隶属函数(MF)表示振动疲劳失效模式下强度退化引起的模糊安全状态。此外,提出了一种基于模糊失效域(FFD)的ALG模糊可靠性模型(FRM)。最后,通过仿真算例验证了方法的可行性。通过将FRM的仿真结果(SR)与静态SSI模型和动态SSI模型的SR进行比较,验证了该方法的合理性。FRM可以在不考虑逐渐退化过程的情况下计算可靠性,因此应用更为广泛。
超声波能量被广泛用于微电子包装的线键合中。有必要确保最大的超声振动位移发生在粘合工具(毛细管)的尖端或附近,以获得最佳性能。在这项研究中,使用激光干涉仪用载荷测量沿毛细管的超声振动的振幅。这为理解和改善毛细血管性能提供了宝贵的信息。该方法应用于实时应用,以优化针对特定键合应用的毛细管设计和粘结过程。首先,评估了与不同的氧化锆成分的新毛细血管材料的应用。具有一定量的氧化锆成分的新材料表明,它是超细节粘结的首选毛细血管材料。接下来,进行了比较分析,以研究新的“ Slimline”瓶颈和常规瓶颈的超声能量转移。使用相同的键合参数,模制的Slimline瓶颈的实际键合响应与地面常规瓶颈表现出了可比的性能。最后,在电线螺栓上进行了60 m m键 - 盖式过程的优化。在优化的参数范围内,监测毛细管的超声位移。对于粘结力和键功率的所有可能组合,毛细管的超声位移随着键功率的增加而增加,而不会导致粘结力变化引起的急剧变化。这表明所选的过程窗口位于稳定区域。Q 2005 Elsevier Ltd.保留所有权利。Q 2005 Elsevier Ltd.保留所有权利。
图 S1:使用 SCAN 函数获得的孤立五金刚烷分子的最低和最高占据分子轨道的模式分辨非谐波测量和电子-声子耦合能量 (EPCE)。上图:根据 100 K 下量子恒温分子动力学模拟获得的轨迹计算出的模式分辨非谐波测量。中图:使用冻结声子方法计算出的最低未占据分子轨道 (LUMO) 的模式分辨 EPCE。下图:使用冻结声子方法计算出的最高占据分子轨道 (HOMO)、HOMO-1 和 HOMO-2 能级的模式分辨 EPCE。