线性被动隔振器的有效频率范围通常受支撑静态载荷所需的支架刚度限制。可通过采用包含负刚度元件的非线性支架来改善这一问题,这些元件的配置方式是动态刚度远小于静态刚度。这种非线性支架在实践中被广泛使用,但文献中并不容易获得严格的分析,因此无法清楚地了解它们的行为。本文研究了一个由垂直弹簧与两个斜弹簧并联组成的简单系统。结果表明,弹簧的几何形状和刚度之间存在独特的关系,从而产生一个在静态平衡位置具有零动态刚度的系统。动态刚度随平衡位置两侧的位移单调增加,当斜弹簧倾斜的角度约为 48 1 和 57 1 之间时,这种情况最不严重。最后,结果表明,系统的力-位移特性可以用三次方程近似。 r 2006 Elsevier Ltd. 保留所有权利。
l天是ISO 1996-2中定义的A加权长期平均声音水平,在一年中的所有一天中确定。12小时的白天期间为07:00至19:00小时。l晚上是ISO 1996-2中定义的A加权长期的平均声音水平,在一年的所有晚上确定。4小时的傍晚时期在19:00至23:00小时之间。l Night是ISO 1996-2定义的A加权长期平均声音水平,在一年的所有夜晚确定。8小时的夜间时间在23:00至07:00小时之间。2.6调查程序噪声测量是根据ISO 1996中包含的指南进行的:声学 - 描述测量和评估以及环境噪声。第1部分:基本数量和评估程序(2016年)和第2部分:确定声压水平(2017)。
TÜV SÜD America 的 EMC/航空航天部门提供与航空航天和国防技术制造商直接相关的全面的国内和国际合规服务,包括针对各种环境压力(包括温度、湿度和振动)的测试。我们在美国最先进的测试实验室已获得美国实验室认可协会 (A2LA) 的认可,可根据 RTCA/DO-160 和 MIL-STD-810 以及 MIL-STD-461 的要求评估和测试技术,解决与电磁兼容性 (EMC) 相关的问题。
1)基于地球的天文学:随着分段镜的出现,望远镜技术的范式发生了变化(Keck,1993),这似乎使非常大的望远镜可扩展到无限,尤其是适应性光学的成功,尤其是由于大气湍流而造成的blur show doce night> doce show a doce show> <[Gilmozzi]。几个项目将在这十年中看到第一光:TMT(TMT(30 m的主镜M1)和E-ELT(M1直径最初预见到42 m,最近降低至39 m),图1。请注意,允许良好图像质量的波前误差仅与观察到的波长有关(λ /14),从而使比率ε=精度 /大小明显小于任何现有项目。这些结构的大小使它们对外部干扰越来越敏感,例如由于地球旋转和风而引起的重力矢量的变化;这需要具有较大带宽的控制系统,与固有频率降低和轻度阻尼相冲突。量表效应分析[preumont]表明,这些复杂的光学机能系统的行为受到控制结构相互作用的威胁,控制结构相互作用迄今为止微不足道或至少无法控制[Aubrun]。
摘要:在大气边界层风洞中对球形穹顶表面进行了一系列风压测量。给出了球形穹顶表面的风压分布,包括平均值和标准差。讨论了墙高跨比、矢跨比、地形类型和雷诺数对风压分布的影响。本研究侧重于风致振动分析。采用本征正交分解 (POD) 技术重建具有不同网格尺寸和形状的网状球形穹顶的风压场,并与风洞试验模型获得的结果进行比较。提出了一种非均匀分布抽头的新处理方法。不同的处理方法会导致具有不同物理意义的不同优化问题。对于风致振动分析的模态叠加分析,提出了一个新的矩阵,作者将其指定为模态载荷相关矩阵,以确定对风效应贡献最大的特殊模态。该模态对背景响应贡献最大,对共振部分贡献显著。该矩阵的物理意义为结构响应的空间分布,其优点是只考虑运动方程中已知的变量,不需要任何准静态或动态假设,最后给出了该矩阵在背景响应中的应用。
(d) (e) (f) (g) 图 2. (a) CO 2 、(b) NH 3 、(c) NH 2 COOH 初始状态 (IS: NH 3 +CO 2 )、(d) NH 2 COOH 过渡态 1 (TS1)、(e) NH 2 COOH 过渡态 2 (TS2)、(f) NH 2 COOH 最终状态 1 (FS1) 和 (g) NH 2 COOH 最终状态 2 (FS2) 的分子表示。原子颜色代码:氢(银色)、碳(青色)、氮(蓝色)和氧(红色)。
嵌入式湍流屏 新型 GRAS 湍流屏是实壁风洞气动声学测试的最新创新。通过将湍流的流体动力学分量衰减高达 25 dB,现在可以识别和诊断感兴趣的声学信号,并且分辨率要高得多。嵌入式湍流屏将嵌入式和嵌入式安装技术与特殊的金属丝网集成到一个单元中,并允许适应多种安装选项。• 非常高的诱导流噪声降低• 非常低的声衰减• 安装高度低• 前部或后部安装选项• 嵌入式和标准麦克风安装
吱吱声和嘎嘎声 我们的静音电动振动器支持行业标准的吱吱声和嘎嘎声振动测试 QA 实践,确保汽车零部件和内饰经久耐用且无噪音,从而提高乘客舒适度。随着混合动力汽车和电动汽车越来越普遍,电池耐久性测试是下一代交通工具的关键。我们开发了一种定制振动测试系统,用于混合电池测试以及多节计算机管理电池的高加速寿命测试 (HALT)。
利用最近开发的 (J. Chem. Theory Comput. 2020, 16, 1215 – 1231) Ad − MD | gVH 方法模拟了乙腈溶液中苝二酰亚胺 (PDI) 染料的光吸收光谱。这种混合量子-经典 (MQC) 方法基于软(经典)/刚性(量子)核自由度的绝热 (Ad) 分离,并将光谱表示为通过广义垂直 Hessian (g VH) 振动电子方法获得的振动电子光谱(对于刚性坐标)的构象平均值(在软坐标上)。该平均值是使用特定参数化的量子力学衍生力场 (QMD-FF) 执行的,针对从经典分子动力学 (MD) 运行中提取的快照进行的。本文对旨在重现灵活分子光谱形状的不同方法的可靠性进行了全面的评估。首先,通过将特定 QMD-FF 和通用可转移 FF 获得的结果与参考气相从头算 MD (AIMD) 的结果进行比较,评估采样构型空间的差异及其对吸收光谱预测的影响,包括纯经典方案(集合平均)和 Ad − MD | gVH 框架。接下来,还获得了溶液中 PDI 动力学的经典集合平均和 MQC 预测,并将其与基于对单个优化苝二酰亚胺结构进行的振动电子计算的“静态”方法的结果进行了比较。在经典的集合平均方法中,用两个 FF 获得的显著不同的采样导致预测光谱的位置和强度都发生了相当大的变化,其中沿 QMD-FF 轨迹计算的光谱与 AIMD 对应光谱非常接近。相反,在 Ad − MD | gVH 理论水平上,不同的采样提供非常相似的振动电子光谱,这表明用通用 FF 获得的吸收光谱中的误差主要与刚性模式有关,因为它可以通过 g VH 执行的二次外推来有效地校正,以沿此类坐标定位基态和激发态势能表面的最小值。此外,从研究PDI染料的自组装过程和大尺寸聚集体的振动电子光谱的角度来看,使用针对分子的QMD-FF似乎也是强制性的,因为在柔性侧链群体中发现的GAFF轨迹存在显著误差,这决定了超分子聚集特性。
与作家雷蒙·斯尼奇的小说相反,促使我撰写这篇论文的是《一系列幸运事件》。我没有时间和空间来汇编这些事件,但我会尽力记住所有使这些成为可能的人。首先,我要感谢我的导师 Juraj Poliak 博士给我机会在论文开发期间与他和他的团队合作。我还要感谢我的团队负责人 Ramon Mata Calvo 博士和我在 DLR-KN 这几个月遇到的所有同事。其中,特别要感谢 DLR-KN 的学生同事:Cesar、Michael、Joana、Mareen 和所有其他人,他们是珍贵的陪伴和愉快的午餐(有时是晚餐)伙伴。我要感谢我在都灵理工大学期间遇到的所有朋友和大学同事,他们是我的第二个家庭,即使相隔千里,他们也一直支持我。感谢 Francesco MD、Claudio、Gaetano、Alessandro、Nicolò、Francesco G.、Luca、Davide、Vito、Alessio P.、Alessio L.、Mariano 和 Niki。我还要感谢 Cubesat PoliTo 团队及其所有成员。最后但并非最不重要的是,我要感谢我的家人,尤其是我的父母,他们总是支持我做出的人生决定,即使他们并不完全理解背后的原因。
