©作者2024。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。
摘要。量子体积是一个全面的、单一的数字指标,用于描述量子计算机的计算能力。近年来,它呈指数级增长。在本研究中,我们将假设这种情况仍然如此,并将这一发展转化为另一种量子算法——量子振幅估计的性能发展。这是使用噪声模型完成的,该模型估计算法单次运行的错误概率。其参数与模型假设下的量子体积有关。将相同的噪声模型应用于量子振幅估计,可以将错误率与每秒生成的 Fisher 信息联系起来,这是量子振幅估计作为一种数值积分技术的主要性能指标。这为其积分能力提供了预测,并表明,如果没有重大突破,作为一种数值积分技术的量子振幅估计在不久的将来不会比传统替代方案更具优势。
可以在不需要眼动的而无需眼睛运动的情况下将注意力定向在空间中。我们使用多元模式分类分析(MVPA)来研究是否可以从EEG Alpha Power和原始活动痕迹中解码秘密空间注意的时间过程。从这些信号中解码注意力可以帮助确定原始的EEG信号和α功率是否反映了注意选择的相同或不同特征。使用经典的提示任务,我们证明了秘密空间注意力的方向可以通过两个信号来解码。但是,原始活动和α功率可能反映出空间注意力的不同特征,而α功率与空间中秘密注意力的方向和原始活动的方向相关,而对感知过程的关注感也影响。
借助光,人们可以找到耗散最小的机制来影响磁化。[1] 在这方面,亚铁磁材料迄今为止对超快激光激发表现出最显著的响应,首先是用单个 40 飞秒激光脉冲观察到金属亚铁磁合金 GdFeCo 中的磁化转换。[2] 已证明该机制是通过激光诱导加热后的强非平衡瞬态铁磁相 [3] 进行的。[4] 后来,通过光诱导磁各向异性变化,在介电亚铁磁体中实现了磁位的非热光学记录机制。[5] 最近,人们发现这种亚铁磁性电介质还能实现一种新颖的热辅助磁记录 (HAMR) 机制,[6,7] 它不需要像 GdFeCo 那样几乎完全退磁,而是依赖于磁各向异性的温度依赖性。 [8] 这就提出了一个问题:磁各向异性的超快变化是否也会在金属亚铁磁体中发挥作用。然而,尽管人们对金属亚铁磁体的研究兴趣浓厚,但尚未讨论磁各向异性超快动力学导致的磁化动力学和最终的磁切换。在这里,为了研究磁各向异性的温度依赖性在金属亚铁磁体的激光诱导磁化动力学中的作用,我们考虑了亚铁磁 Gd/FeCo 多层。在过去的几年中,人们研究了激光诱导的稀土过渡金属 (RE-TM) 多层异质结构现象,并将其与合金进行了比较,主要关注全光切换。 [9–13] 在这方面,多层膜与合金相比最大的区别在于,由于 RE-TM 接触面积减小,且被限制在界面上,因此稀土和过渡金属自旋之间的有效反铁磁交换相互作用较弱。一个较少暴露的方面是结构各向异性对磁各向异性的影响,这种影响是由各向同性合金的层状排列引起的。也就是说,当界面处的对称性被破坏时,结构可以获得对磁各向异性的额外和可控贡献。[14,15] 通过对磁场和泵浦通量进行泵浦探测磁光测量,我们发现我们的多层膜中的激光诱导动力学与已知的
摘要:最近的研究表明,在整个历史记录中,潜在的可预测性和实际预测技能主要是由于自然际变异性。在这项研究中,我们探讨了未来是否预计将来可能会变化的潜在可预测性,这是对人为气候变化的独特反应。我们估计了厄尔尼诺现象的潜在预测 - 南部振荡(ENSO)以及全球表面温度,降水和大气上的循环循环异常,从1921年到2100年,在完美的模型框架内,使用五个辅助模型大型组合模型。我们发现,历史和预测的ENSO振幅变化通过ENSO驱动的季节性预测的信噪比的变化在气候可预测性中产生了全球规模的变化,Niño-3.4标准偏差的变化为10%,导致全球平均预测能力14%的标准偏差在12个月的全球平均能力上的变化14%。这种关系表明,在未来几十年中,全球大部分地区的潜在可预测性变化可能与ENSO的人为气候变化有关。然而,由于当前模型在预计的ENSO变化的符号和强度上大大不同意,因此无法确定未来全球预方法变化的轨迹。通过在五个大型合奏中看到的可预测性变化广泛变化来证明,模型表现出强大的增加,稳健的减少或预测能力的显着变化,具体取决于它们各自的预测ENSO振幅趋势。我们的结果强调了对气候模型开发的需求,旨在更好地捕获过去强迫和强制性的ENSO变异性的变化,这是必要的(如果不舒服的话),以将投影变化限制为全球气候可预测性。
通过电气调整,电动频率波的振幅的主动操纵是下一代THZ成像的关键,对于解锁战略应用至关重要,从无线通信到量子技术。在这里,我们基于电源门控单层石墨烯演示了高性能THZ振幅调节剂。通过仔细控制四分之一波长腔结构中的间隔厚度,通过优化电场耦合来实现1.5 - 6 THZ范围内的宽带调制,最大调制深度在2 THz左右。拉曼表征通过石墨烯的电解质门控为0.39 eV的费米级调整。然后开发和测试具有独立控制亚毫米区域的测试2 2调节器阵列,像素之间没有串扰。报告的结果突出了电解石墨烯对有效THZ调制的潜力。单芯片设计可与其他电子组件相结合,并易于集成,使其成为THZ空间光调节器和自适应光学组件的有前途的平台。
参考文献1。Boyd AS,KH的Neldner。 计划行。 J Acad Dermatol 1991; 25:593-6 [PMID:1791218]。 2。 Hamour AF,气候H,Exchange A. 地衣口服。 cmaj 2020; 192:船。 [PMID:32753462]。 3。 PC,Ramay FH,Steinweg SA,MS。计划线:耐心存在的五种变体。 JAAD案例代表。 2019; 55-7。 [PMID:31245519]。 4。 Boch K,Langan EA,Cridin K和Al。 计划行。 med(毛地)。 2021; 8:737813。 [PMID:34790675]。 5。 Abduelmula A,Big A,Mutti A,Yeung Kcy,Yeung J. 在Planus中使用Janus抑制剂:基于明显的评论。 J 2023:27:271-6。 [PMID:36815857] 6。 CM谣言,MH Patel,KJ Severson和Al。 中的ruxolinibs J投资Dermatol 2022; 142:2109-16 e4。 [PMID:35131254]。 7。 b,Bhullar P,Brumfiel C. 34004局部鲁唑啉尼在皮肤地衣皮肤皮肤上阻塞了干扰素信号传导。 J Dermatol Acad 2022; 87:AB121。 [doi:10.1016/j.jaad.2022.06.517]。 8。 Shawky Am,Almalki FA,Abdalla AN,Abdelazeem AH,Gouda AM。 经批准的JAK抑制剂的补充。 Parmaces 2022; 14:5。Boyd AS,KH的Neldner。计划行。J Acad Dermatol1991; 25:593-6[PMID:1791218]。2。Hamour AF,气候H,Exchange A.地衣口服。cmaj2020; 192:船。[PMID:32753462]。3。PC,Ramay FH,Steinweg SA,MS。计划线:耐心存在的五种变体。JAAD案例代表。2019; 55-7。[PMID:31245519]。4。Boch K,Langan EA,Cridin K和Al。 计划行。 med(毛地)。 2021; 8:737813。 [PMID:34790675]。 5。 Abduelmula A,Big A,Mutti A,Yeung Kcy,Yeung J. 在Planus中使用Janus抑制剂:基于明显的评论。 J 2023:27:271-6。 [PMID:36815857] 6。 CM谣言,MH Patel,KJ Severson和Al。 中的ruxolinibs J投资Dermatol 2022; 142:2109-16 e4。 [PMID:35131254]。 7。 b,Bhullar P,Brumfiel C. 34004局部鲁唑啉尼在皮肤地衣皮肤皮肤上阻塞了干扰素信号传导。 J Dermatol Acad 2022; 87:AB121。 [doi:10.1016/j.jaad.2022.06.517]。 8。 Shawky Am,Almalki FA,Abdalla AN,Abdelazeem AH,Gouda AM。 经批准的JAK抑制剂的补充。 Parmaces 2022; 14:5。Boch K,Langan EA,Cridin K和Al。计划行。med(毛地)。2021; 8:737813。[PMID:34790675]。5。Abduelmula A,Big A,Mutti A,Yeung Kcy,Yeung J.在Planus中使用Janus抑制剂:基于明显的评论。J2023:27:271-6。[PMID:36815857]6。CM谣言,MH Patel,KJ Severson和Al。 中的ruxolinibs J投资Dermatol 2022; 142:2109-16 e4。 [PMID:35131254]。 7。 b,Bhullar P,Brumfiel C. 34004局部鲁唑啉尼在皮肤地衣皮肤皮肤上阻塞了干扰素信号传导。 J Dermatol Acad 2022; 87:AB121。 [doi:10.1016/j.jaad.2022.06.517]。 8。 Shawky Am,Almalki FA,Abdalla AN,Abdelazeem AH,Gouda AM。 经批准的JAK抑制剂的补充。 Parmaces 2022; 14:5。CM谣言,MH Patel,KJ Severson和Al。J投资Dermatol2022; 142:2109-16 e4。[PMID:35131254]。7。b,Bhullar P,Brumfiel C. 34004局部鲁唑啉尼在皮肤地衣皮肤皮肤上阻塞了干扰素信号传导。J Dermatol Acad2022; 87:AB121。[doi:10.1016/j.jaad.2022.06.517]。8。Shawky Am,Almalki FA,Abdalla AN,Abdelazeem AH,Gouda AM。经批准的JAK抑制剂的补充。Parmaces2022; 14:5。[PMID:35631587]。
最近开发了Terahertz(THZ)二维相干光谱(2DC)是一种强大的技术,可以以与其他光谱镜的方式获取材料信息。在这里,我们利用THZ 2DC研究了常规超导体NBN的THZ非线性响应。使用宽带THZ脉冲作为光源,我们观察到了一个三阶非线性信号,其光谱成分的峰值达到了超导间隙能量2δ的两倍。具有窄带Thz脉冲,在驱动频率ω处鉴定出THZ非线性信号,并在ω¼2δ时在温度下表现出谐振剂的增强。一般的理论考虑表明,这种共振只能由光激活的顺磁耦合引起。这证明了非线性THZ响应可以访问与磁磁性拉曼样密度波动不同的过程,据信这在金属的光学频率下占主导地位。我们的数值模拟表明,即使对于少量疾病,ω¼2δ共振也是由整个研究疾病范围内的超导振幅模式主导的。这与其他共振相反,其振幅模式的贡献取决于疾病。我们的发现证明了THZ 2DC探索其他光谱学中无法访问的集体激发的独特能力。