典型的性能波长767 nm(k),780 nm(rb)871 nm(yb +),1064 nm(yag)1070 nm(al +)光学功率> 30mw30mw内在线宽5 <3 kHz 〜3 kHz 〜3 kHz 〜3 kHzfWHm linewidth(fwhm linewidth(10°S)5 <100 khz 5 <<<100 khz 5 <<<100 khz 5 <<<<100 khz <<<100 khz <<<<<<<<100 khz。足迹25 x 80mm²质量40 g空间资格和任务
稿件收到于 2022 年 3 月 28 日;修订于 2022 年 5 月 3 日;接受于 2022 年 5 月 12 日。导致这些结果的研究获得了欧盟“地平线 2020”研究和创新计划下玛丽居里资助协议编号 812790(MSCA-ETN PETER)的资助。(通讯作者:Qazi Mashaal Khan。)Qazi Mashaal Khan 就职于 ESEO 工程学院、电气和电子工程系、RF-EMC 研究小组,49107 昂热,法国,同时也就职于法国国立应用科学研究所,35708 雷恩,法国(电子邮件:qazimashaal.khan@eseo.fr)。 Lokesh Devaraj 和 Alastair Ruddle 就职于 HORIBA MIRA Limited,地址:英国纽尼顿,CV10 0TU(电子邮件:lokesh.devaraj@horiba-mira.com;alastair.ruddle@horiba-mira.com)。Mohsen Koohestani、Mohamed Ramdani 和 Richard Perdriau 就职于 ESEO 工程学院电气和电子工程系 RF-EMC 研究组,地址:法国昂热 49107,以及雷恩第一大学雷恩电子和电信研究所,地址:法国雷恩 35042(电子邮件:mohsen.koohestani@eseo.fr;mohamed.ramdani@eseo.fr;richard.perdriau@eseo.fr)。数字对象标识符 10.1109/LEMCPA.20XX.XXXXXX
处理大数据,尤其是视频和图像,是现有冯诺依曼机面临的最大挑战,而人脑凭借其大规模并行结构,能够在几分之一秒内处理图像和视频。最有前途的解决方案是受大脑启发的计算机,即所谓的神经形态计算系统 (NCS),最近得到了广泛的研究。NCS 克服了传统计算机一次一个字思考的限制,得益于类似于大脑的数据处理大规模并行性。最近,基于自旋电子的 NCS 已显示出实现低功耗高密度 NCS 的潜力,其中神经元使用磁隧道结 (MTJ) 或自旋扭矩纳米振荡器 (STNO) 实现,并使用忆阻器来模拟突触功能。尽管与 MTJ 相比,使用 STNO 作为神经元所需的能量较低,但由于启动具有可检测输出功率的振荡需要高偏置电流,因此基于自旋电子的 NCS 的功耗与大脑之间仍然存在巨大差距。在本文中,我们提出了一种基于自旋电子的 NCS(196 × 10)概念验证,其中通过微瓦纳秒激光脉冲辅助 STNO 振荡来降低 NCS 的功耗。实验结果表明,通过将 STNO 加热到 100 ◦ C,设计的 NCS 中 STNO 的功耗降低了 55.3%。此外,与室温相比,100 ◦ C 时自旋电子层(STNO 和忆阻器阵列)的平均功耗降低了 54.9%。与室温下典型的基于 STNO 的 NCS 相比,所提出的基于激光辅助 STNO 的 NCS (LAO-NCS) 在 100 ◦ C 下的总功耗提高了 40%。最后,与室温下典型的基于 STNO 的 NCS 相比,LAO-NCA 在 100 ◦ C 下的能耗预计可降低 86%。
除非出现特殊情况,本文件将自发布之日起 25 年内在互联网上或其未来的后续版本上保留。访问该文件意味着允许任何人阅读、下载、打印单份副本供个人使用,以及以不加改变的方式将其用于非商业研究和教学。稍后转让版权不能撤销此许可。该文件的任何其他使用均须获得作者的许可。为了保证真实性、安全性和可用性,我们采取了技术和管理解决方案。作者的道德权利包括在以上述方式使用文献时在良好实践所要求的范围内署名作者的权利,以及防止文献被更改或以冒犯作者文学或艺术声誉或个性的形式或内容呈现的权利。有关林雪平大学电子出版社的更多信息,请访问该出版商的网站 http://www.ep.liu.se/。
当频率与温度的要求过于严格而无法通过基本 XO(晶体振荡器)或 TCXO(温度补偿晶体振荡器)满足时,可使用 OCXO(恒温晶体振荡器)。使用 OCXO,当振荡器外部温度发生变化时,晶体和关键电路的温度会保持恒定。使用恒温器控制振荡器内部的温度可保持此恒定温度。在 OCXO 中,环境温度的变化会被感应到,然后反馈到恒温器控制器,该控制器会持续保持振荡器外壳内部的最佳温度。OCXO 可以将晶体的固有稳定性提高 5000 倍以上。恒温器控制系统并不完善,开环增益不是无限的,恒温器(振荡器)内部存在内部温度梯度,并且在传统恒温器中,恒温器外壳外部的电路会受到环境温度变化的影响,从而“拉动”频率。
如今,基于石英谐振器的参考振荡器的工作频率被限制在几百兆赫。从这样的参考振荡器中获取千兆赫范围的信号需要倍频或频率合成。然而,倍频过程会根据倍频系数的 20log 10 增加输出信号的相位噪声,同时也会增加电路的复杂性。从这个意义上讲,直接在毫米 (mm-) 波段的基频上产生 LO 信号是有利的。然而,这需要一个高质量 (Q-) 因子谐振器,最好在几千兆赫下工作。采用金属腔的传统无源谐振器的 Q 因子受到金属中的电阻损耗的限制。或者,基于陶瓷谐振器的直接在基频下工作的振荡器提供平均相位噪声,并且通常在 25 GHz 以上不可用。
摘要本文提出了一种新的技术,可以在芬费环振荡器的低功率耗散方面提高性能。5阶段环振荡器在FinFET技术的概念下设计。FinFET比普通CMOS技术提供更好的性能。FinFET(Fin Type Field效应晶体管)技术的呈现已在纳米创新中打开了新部分。超薄鳍的布置使抑制的短通道效应可替代单门MOSFET,凭借其出色的静电性能和可比性的可比性易于制造性。降低了亚微米区域的短通道效应并使晶体管仍然可扩展。由于这个原因,与大多数对应物相比,小长度晶体管可以具有更好的内在增益。仿真结果表明,使用FinFET技术对具有0.135MWATT功率和CMOS环振荡器的功率耗散的环振荡器提供0.232 MWATT。i为10.632mA,而FinFet环振荡器可提供0.381mA。关键字:FinFET技术,环振荡器,CMOS技术