线性椭圆运算符的定量随机均质化已经被众所周知。在此贡献中,我们向前迈进了具有P-生长的单调操作员的非线性设置。这项工作致力于定量的两尺度扩展结果。通过处理2≤p<∞的指数范围d≤3,我们能够考虑真正的非线性椭圆方程和系统,例如 - a(x)(x)(1 + |∇| p-p-p-2)∇u = f(使用随机,非不必要的对称)。从p = 2到p> 2时,主要困难是分析相关的线性化操作员,其系数是退化的,无限的,并取决于通过非线性方程的解决方案的随机输入a。我们的主要成就之一是控制这种复杂的非线性依赖性,导致迈耶对线性化运算符的估计值,这是我们得出的最佳定量两尺度扩展结果的关键(这在周期性设置中也是新的)。
摘要:儿童能够检索单词含义并将其纳入句子的能力,以及支持这些技能的神经结构,在整个青春期都在不断发展。theta(4-8 Hz)活动与儿童的单词检索相对应减少,并随着年龄的增长而变得更加局部。这个自下而上的单词检索通常与伽马(31-70 Hz)的变化配对,这被认为反映了成人的语义统一。在这里,我们在句子处理过程中使用EEG时间 - 频率(8-15岁)研究了伽玛的参与度,以揭示句子处理期间伽马网络的发展轨迹。儿童在很大程度上依靠语义整合来理解句子,但是随着他们成熟,语义和句法处理单元的成熟和局部化。我们观察到11岁左右的γ振荡发生了类似的发育变化,年轻的组(8-9和10-11)表现出宽广的分布的伽马活性,具有较高的幅度,而年龄较大的组(12-13和14-15)(12-13和14-15)表现出较小,更局部的伽玛活性,尤其是在左中央和后部地区。我们将这些发现解释为支持以下论点:与年龄较大的孩子相比,年幼的孩子更严重地依赖语义过程来理解句子。和成人一样,儿童的语义处理与伽马活性有关。
b'Inatruction fermi液体范式(1,2)是现代冷凝物质理论的基石之一,提供了多体系统的有效描述,其基本激发是弱相互作用的费米金准式晶粒。费米液体的理论提供了理解为什么金属中的传导电子基本上是非相互作用的颗粒。费米液体可以以纵向密度振荡的形式支持集体模式,这些振荡与经典流体中的声音类似。它们的传播取决于该模式的角频率\ xcf \ x89是否高于或低于粒子间碰撞速率(3)\ xcf \ x84 1 coll。液体3他是一种中性的费米液体,是第一个从第一个声音模式(\ xcf \ XCF \ x89 \ xcf \ xcf \ x84 1 coll,即在流体动态状态)到零1 col(\ xcf xcf xcf xcf xcf xcf)(\ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ xcf \ x,观察到Coll,即,在无碰撞状态中)(4)。在具有远距离库仑相互作用的电子费米液体中,其中电子电子(EE)散射时间\ xcf \ x84 EE起着\ xcf \ x84 coll的作用,第一,零声折叠到Plasmon模式(5)。在这种模式下,从'
g-band振荡(GBO)是由快速加速的中间神经元(FSI)生成的,对于认知功能至关重要。异常,并且与认知障碍密切相关。但是,基本机制知之甚少。研究GBO在离体制备中的GBO由于需求量很高而具有挑战性,并且需要连续的牛至递送到组织。结果,通常会在非常年轻的动物或最大化氧气供应但妥协空间分辨率的实验设置中研究GBO。因此,对GBO在不同的大脑结构内部和不同动物中的脑组织之间的相互作用有一个深刻的了解。为了解决这些局限性,我们开发了一种新的方法,用于使用60频道的,穿孔的微电极阵列(PMEAS)研究成熟动物的离体海马切片中的GBO。pmeas增强了电生理记录中的氧气递送并增加了空间分辨率,从而实现了离散大脑结构内GBO同步的全面分析。我们发现,在海马内的神经途径上横断了Schaffer侧支,损害了CA1和CA3子场之间的GBO相干性。此外,我们通过研究表现出抑制性突触功能障碍的ANK3突变小鼠模型中的GBO相干性来验证我们的方法。我们发现,在这些突变小鼠的CA3子场中,GBO相干性保持完整,但在CA1子场内和之间受损。总体而言,我们的方法具有表征Animal模型的离体脑部切片中GBO的巨大潜力,从而增强了我们对精神疾病中网络功能障碍的理解。
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
正念冥想是一种流行的冥想形式,已在教育、临床环境、商业行业和军队等各个领域显示出广泛的益处(Goldberg 等人,2020 年;Duff,2022 年)。身心联系是正念冥想的核心,最近的研究表明,冥想可以调节大脑网络组织和默认模式网络内心脏活动的神经表征(Jiang 等人,2020 年;Lurz 和 Ladwig,2022 年;Wong 等人,2022 年)。然而,与对正念其他机制的大量研究相比,关于脑心联系的潜在神经机制的研究仍然相对稀缺(Ng 等人,2005 年;Minhas 等人,2022 年)。我们之前的研究证明了正念冥想练习者的脑心同步,然而,它只在群体层面检查了数据(Gao 等人,2016 年)。为了更好地理解大脑和身体在冥想过程中如何相互作用,本研究重点关注个体正念冥想练习中瞬间的大脑-心脏同步,这将支持在正念练习中的更广泛应用。自然地,个体在对重大事件或强烈情绪的反应中可以感受到即时的身心联系,而心脏尤其敏感。这是因为中枢神经系统通过自主神经系统调节内脏器官活动,大多数内脏器官自主运作,但表现出明显的昼夜节律(Tran 等人,2021 年;Chambers 等人,2022 年)。保持一致的身心活动和昼夜节律对我们的健康至关重要,扰乱可能会导致内脏器官功能障碍甚至心脏骤停(Tran 等人,2021 年)。认识到身心一致性的重要性,生物医学社会模型已被提出用于促进健康( Heidger,2011 )。为了简化身心联系的研究,本研究探讨了大脑和心脏活动之间的关系,因为心脏是对外界刺激最敏感的器官( Lutwak and Dill,2012 )。脑电图(EEG)和心电图(ECG)可以分别轻松测量大脑和心脏活动。不同的 EEG 频带,如 delta、theta、alpha、beta 和 gamma,反映了不同的心理状态。其中,alpha 波是人类的主要大脑振荡,alpha 波活动的变化是 EEG 冥想研究中最可靠的结果( Lomas et al.,2015 )。不同的冥想形式会引起不同脑波段的变化;例如,传统的藏传佛教冥想与伽马波段变化有关(Lutz 等人,2004 年;Ferrarelli 等人,2013 年;Jiang 等人,2020 年)。研究还表明,前扣带皮层与自主神经系统相连(Devinsky 等人,1995 年),和额叶中线 θ 节律与冥想期间的心率变异性相关(Kubota 等人,2001 年)。尽管如此,在各种冥想过程中,普遍观察到 α 波活动增加,特别是在枕叶和额叶区域(Cahn 和 Polich,2006 年)。在本研究中,我们专注于 α 波分析,因为它在闭眼放松期间的大脑节律和主导地位中具有重要意义,闭眼放松被认为是一种“皮质
在大脑表现出的动力学活性模式的多功能形式中,振荡是最显着,最广泛的研究之一,但仍然没有得到充分理解。在本文中,我们使用中尺度脑活动的经典神经质量模型(称为线性阈值动力学)提供了神经网络中振荡行为存在的各种结构特征。利用这种动力的开关性质,我们在(i)(i)二维兴奋性抑制网络(E-i Pairs)中获得了网络结构及其外部振荡的各种必要和/或有效的条件,该网络具有一个抑制网络,具有一个抑制性的网络,具有一个抑制性的网络,均一(iii in III),(III),(III),(III),(III)(III),(III),(II III),(II III)(II III)(III)(II III),(II III)(III)(II III)(II III)(III)(II II)(II III)(II III)(II III)(II III)(II III)(II III)(II II)节点和(IV)E-I对的网络。在整个治疗过程中,考虑到所考虑的动态的任意维度,我们依靠缺乏稳定的平衡作为振荡的存在,并提供广泛的数值结果来支持其与更标准的基于信号的基于信号的基于信号的计算神经科学中振荡的定义。
摘要 儿童期和青少年期是人类生命周期的关键阶段,基本的神经重组过程在此发生。大量文献研究了伴随的神经生理变化,重点关注人类脑电图信号最主要的特征:α振荡。脑电图信号处理的最新发展表明,传统的α功率测量方法受到各种因素的干扰,需要分解为周期性和非周期性成分,这代表了不同的潜在大脑机制。因此,尚不清楚信号的每个部分在大脑成熟过程中如何变化。使用多元贝叶斯广义线性模型,我们在最大的公开儿科数据集(N=2529,年龄 5-22 岁)中检查了α活动的非周期性和周期性参数,并在独立验证样本(N=369,年龄 6-22 岁)的预注册分析中复制了这些结果。首先,复制了有据可查的总α功率与年龄相关的下降。然而,当控制非周期信号成分时,我们的研究结果为非周期调整后的 α 功率随年龄增加而增加提供了强有力的证据。如以前的研究报告所述,相对 α 功率也显示出成熟过程中的增加,但这表明我们低估了周期性 α 功率与大脑成熟之间的潜在关系。非周期截距和斜率随年龄增加而下降,并且与总 α 功率高度相关。因此,需要重新考虑早先对总 α 功率与年龄相关变化的解释,因为活跃突触的消除与非周期截距的下降有关。相反,扩散张量成像数据的分析表明,非周期调整后的 α 功率随年龄增加而增加与丘脑皮质连接性增强有关。从功能上讲,我们的结果表明,丘脑对皮质 α 功率控制的增强与大脑成熟过程中注意力表现的提高有关。
在细胞外空间中记录的抽象脑振荡是反映了人群或网络中神经元的活性和功能的神经生理学数据的最重要方面之一。脑振荡的信号强度和模式可以是用于疾病检测和功能恢复的强大生物标志物。电生理信号还可以用作许多旨在在神经系统和神经假体之间接口的尖端技术的指数,并监测增强神经活动的功效。在这篇综述中,我们概述了有关本地现场潜力,电磁或磁性信号及其生物学相关性的基本知识,然后概述了各种临床和体验中风研究中报道的发现。我们审查了中风诱导的海马振荡变化的证据,并破坏了大脑网络之间的通信,因为中风后认知功能障碍是潜在的机制。我们还讨论了通过恢复神经活动和增强脑可塑性来促进中风后功能恢复的脑刺激的希望。
在细胞外空间中记录的抽象脑振荡是反映了人群或网络中神经元的活性和功能的神经生理学数据的最重要方面之一。脑振荡的信号强度和模式可以是用于疾病检测和功能恢复的强大生物标志物。电生理信号还可以用作许多旨在在神经系统和神经假体之间接口的尖端技术的指数,并监测增强神经活动的功效。在这篇综述中,我们概述了有关本地现场潜力,电磁或磁性信号及其生物学相关性的基本知识,然后概述了各种临床和体验中风研究中报道的发现。我们审查了中风诱导的海马振荡变化的证据,并破坏了大脑网络之间的通信,因为中风后认知功能障碍是潜在的机制。我们还讨论了通过恢复神经活动和增强脑可塑性来促进中风后功能恢复的脑刺激的希望。