大于 80 Hz 的高频振荡 (HFO) 具有独特的特征,可将其与时频表示中可以充分证明的尖峰和伪影成分区分开来。我们引入了一种无监督的 HFO 检测器,它使用计算机视觉算法在二维 (2D) 时频图上检测 HFO 标志。为了验证检测器,我们引入了一个基于具有高斯包络的正弦波的 HFO 分析模型,可以推导出时频空间中的解析方程,这使我们能够在时域中常见的 HFO 检测标准与计算机视觉检测算法使用的频域标准之间建立直接对应关系。检测器在时频表示上识别潜在的 HFO 事件,如果满足有关 HFO 频率、振幅和持续时间的标准,则将其归类为真正的 HFO。根据分析模型,在存在噪声的情况下,对检测器进行了模拟 HFO 的验证,信噪比 (SNR) 范围从 -9 到 0 dB。检测器的灵敏度在 SNR 为 -9 dB 时为 0.64,在 -6 dB 时为 0.98,在 -3 dB 和 0 dB 时 > 0.99,而其阳性预测值均 > 0.95,无论 SNR 如何。使用相同的模拟数据集,我们的检测器与四个之前发布的 HFO 检测器进行了对比。F 度量是一种同时考虑灵敏度和阳性预测值的组合指标,用于比较检测算法。我们的检测器在 -6、-3 和 0 dB 时超越其他检测器,在 -9 dB SNR 时拥有仅次于 MNI 检测器的第二好 F 分数(0.77 对 0.83)。研究人员在 6 名患者的一组 36 个颅内脑电图 (EEG) 通道上测试了在临床记录中检测 HFO 的能力,其中 89% 的检测结果由两名独立审阅者验证。结果表明,基于时频图中的 2D 特征对 HFO 进行无监督检测是可行的,并且其性能与最常用的 HFO 检测器相当或更好。
在基于量子阱的异质结构材料中,研究能态密度对量化磁场强度和占据的依赖关系,可以为纳米级半导体结构中电荷载流子的能谱提供有价值的信息。当低维半导体材料暴露于横向量化磁场时,能态密度可以通过动力学、动力学和热力学量的振荡依赖关系来测量——磁阻、磁化率、电子热容量、热电功率、费米能和其他物理参数 [3, 4]。由此可见,在横向和纵向磁场存在下研究矩形量子阱导带能态密度的振荡是现代固体物理学的迫切问题之一。
摘要 系统性低频振荡 (sLFO) 是频率为 0.01–0.15 Hz 的非神经元振荡。这些 sLFO 以对称(横跨身体中线)和高度可预测的延迟穿过整个身体和大脑,可以通过功能性近红外光谱 (fNIRS) 和血氧水平依赖性功能性磁共振成像观察到它们。它们的特性可作为检测和监测循环功能障碍的有用生物标志物。纯 sLFO 可以在外围(例如手指、脚趾、耳垂)收集。在这里,我们介绍了一种用于检测和分析外围 sLFO 的 7 通道 NIRS 血氧仪 [MNO],我们将其命名为并发连续波 fNIRS 系统 (CON-CW fNIRS)。我们的 CON-CW fNIRS 体积小(10 9 10 9 20 cm 3 ),便携性高,功耗低,性价比高(低于 300 美元)。我们表明,我们的设备非常可靠,并且可以通过直接比较(r max = 0.908 D [HbO] 和 r max = 0.841 D [Hb])以及与之前发布的数据进行比较,重现使用商用 fNIRS 设备获取的值。
摘要:儿童能够检索单词含义并将其纳入句子的能力,以及支持这些技能的神经结构,在整个青春期都在不断发展。theta(4-8 Hz)活动与儿童的单词检索相对应减少,并随着年龄的增长而变得更加局部。这个自下而上的单词检索通常与伽马(31-70 Hz)的变化配对,这被认为反映了成人的语义统一。在这里,我们在句子处理过程中使用EEG时间 - 频率(8-15岁)研究了伽玛的参与度,以揭示句子处理期间伽马网络的发展轨迹。儿童在很大程度上依靠语义整合来理解句子,但是随着他们成熟,语义和句法处理单元的成熟和局部化。我们观察到11岁左右的γ振荡发生了类似的发育变化,年轻的组(8-9和10-11)表现出宽广的分布的伽马活性,具有较高的幅度,而年龄较大的组(12-13和14-15)(12-13和14-15)表现出较小,更局部的伽玛活性,尤其是在左中央和后部地区。我们将这些发现解释为支持以下论点:与年龄较大的孩子相比,年幼的孩子更严重地依赖语义过程来理解句子。和成人一样,儿童的语义处理与伽马活性有关。
摘要:大西洋子午翻转循环(AMOC)在气候中起着重要作用,将热量和盐传输到北大西洋亚北大西洋。AMOC的变异性对大气强迫敏感,尤其是北大西洋振荡(NAO)。由于AMOC观察值很短,因此气候模型是研究AMOC可变性的宝贵工具。然而,气候模型存在已知问题,例如不确定性和系统偏见。进行投资,评估了参与耦合模型对比项目(CMIP6)的6阶段模型的工业前控制实验。在模型的子极平均表面温度和盐度中有一个大但相关的扩散。通过将模型分成温暖的或冷的新鲜的亚极性回旋,表明温暖的 - 咸模型在拉布拉多海中具有较低的海冰盖,因此,在正阳阳性的NAO期间,较大的热量损失。层次也较弱,因此较大的与NAO相关的热量损失也会影响更大的深度。因此,在温暖的模型中,地下密度异常比倾向于冷又新鲜的模型要强得多。当这些异常沿西部边界向南传播,它们建立了一个区域密度梯度异常,从而促进了温暖的咸模型中对NAO的延迟延迟的延迟。这些发现证明了模型的含义是如何在变量之间链接并影响变异性的,这强调了改善模型中北大西洋平均状态的需求。
1个神经调节中心和临床研究中心,Spaulding Rehabilitation Hospital and Massachusetts综合医院,哈佛医学院,美国马萨诸塞州,美国马萨诸塞州02115; lcamargo@mgh.harvard.edu(L.C.); kevin.pacheco.barrios@gmail.com(K.P.-B。)2 Unidad deResjuctivacióntolaGeneraceción y y y y y sinties证据En Salud,San Ignacio de Loyola大学,利马15024,秘鲁3精神卫生部,圣卡斯萨·德·斯卡萨(Paulo) lucasmurins@gmail.com 4里奥格兰德大学(UFRGS)联邦大学医学院,巴西Porto Alegre 90010-150; wcaumo@hcpa.edu.br 5疼痛和神经调节实验室,医院Declíricasde Porto Alegre(HCPA),Porto Alegre 90035-903,巴西 *通信:Fregeni.felipe.felipe@mgh.harvard.edu;电话。: +1-617-952-6153;传真: +1-617-952-6150†这些作者对这项工作也同样贡献。
摘要。在有丝分裂纺锤体中,微管在中期通过捕获键附着在动粒上,微管解聚力引起随机染色体振荡。我们研究了纺锤体模型中的协同随机微管动力学,该模型由一组平行微管组成,这些微管通过弹性接头附着在动粒上。我们包括微管的动态不稳定性以及弹性接头对微管和动粒的作用力。采用基于福克-普朗克方程的平均场方法,对外力作用于动粒的单侧模型进行分析求解。该解建立了微管集合的双稳态力-速度关系,与随机模拟一致。我们推导出双稳态的接头刚度和微管数的约束。单侧纺锤体模型的双稳态力-速度关系导致双侧模型中的振荡,这可以解释中期随机染色体振荡(方向不稳定性)。我们推导出中期染色体振荡的连接体刚度和微管数的约束。将极向微管通量纳入模型,我们可以解释实验观察到的极向通量速度高的细胞中染色体振荡的抑制。然而,在存在极向喷射力的情况下,染色体振荡持续存在,但幅度减小,姊妹动粒之间有相移。此外,极向喷射力是必要的,以使染色体在纺锤体赤道处对齐,并稳定两个动粒的交替振荡模式。最后,我们修改了模型,使得微管只能对动粒施加拉力,从而导致两个微管集合之间发生拉锯战。然后,到达动粒后诱发的微管灾难是刺激振荡的必要条件。该模型可以定量再现 PtK1 细胞中动粒振荡的实验结果。
频率调制 (FM)。图 3a 中的框图描述了振幅和相位检测以及 FM 模式。在振幅和相位检测模式下,LiftMode 扫描期间没有反馈;即,使悬臂振荡的驱动信号具有恒定频率。通过绘制悬臂的相位或振幅与平面坐标的关系,可以生成 3-D EFM 图像。在 FM 模式下,悬臂振荡的相位是相对于高分辨率振荡器的驱动信号的相位来测量的。相位差用作反馈方案中的误差信号;即,驱动信号的频率被调制(图 3a 中的“频率控制线”),以使悬臂振荡相对于驱动信号保持恒定相位。然后绘制驱动信号频率的调制与平面坐标的关系,从而创建 3-D EFM 图像。
摘要植物层或植物叶表面代表了一个大小相当大的微生物生态系统,具有非凡的生物多样性和巨大的潜力,可在生物技术,农业,医学和其他地方发现新产品,工具和应用。这种迷你审查强调了植物圈的应用微生物学是一种原始的研究领域,该领域与基因,基因产物,自然化合物和特征有关,这些基因,自然化合物和特征是浮力层特异性适应和服务,这些适应和服务具有当前或未来创新的商业和经济价值。的例子包括植物生长和抑制疾病的植物杆菌,支持人类健康的益生菌和发酵食品,以及对空气生污染物,残留农药或塑料造成叶面污染的微生物。腓骨微生物可将植物生物量转化为堆肥,可再生能量,动物饲料或纤维。他们生产食品,例如增稠剂和糖替代品,工业级生物表面活性剂,新型抗生素和癌症药物,以及用作食品添加剂或冷冻剂的酶。此外,基于DNA序列的基于叶片相关的微生物群落的新发展允许在食品安全和保障的背景下进行监视方法,例如,在叶状蔬菜上检测到肠道蔬菜,预测植物性疾病暴发,并拦截植物疾病爆发,并拦截植物性植物病原体和对国内交易商品的病原体和病虫。