直径 40 英寸的石墨环氧发动机 (GEM 40) 是一种捆绑式助推器系统,旨在为 Delta II 运载火箭提供推力增强。GEM 40 具有 IM7/55A 石墨复合材料发动机外壳、芳纶填充 EPDM 绝缘体和 10 度倾斜固定喷嘴组件。对于 Delta II 九发动机配置,六台发动机在地面点火,三台发动机在空中点火。空中启动(高空点火)GEM 40 发动机配置具有加长的喷嘴出口锥体,膨胀率更高,出口平面安装的喷嘴封闭系统在空中启动发动机点火时弹出,并采用不同的外部绝缘方案。 GEM 40 自 1991 年以来一直在 Delta II 运载火箭上飞行。GEM 40 捆绑式助推器于 1990 年开始发射 Delta II 运载火箭,最后一次飞行于 2018 年 9 月,结束了长达 28 年、1,003 台发动机的成功时代。
(REC)代表可再生一代,该发电量未交付以服务零售。未捆绑的REC不会反映在上述功率混合物或温室气体排放强度中。与LADWP的2023年电力组合相关联的捆绑式REC来自合格的可再生能源发生器,例如生物量,生物质量,地热,合格的水力发电,太阳能和风能资源。
ICLEI - 美国地方可持续发展协会 (ICLEI USA) 通常不建议地方政府购买可再生能源信用额 (REC) 作为温室气体 (GHG) 减排策略。尤其不建议购买非捆绑式 REC,因为这些 REC 无法有效减少发电排放,并且根据美国社区协议,不能包含在排放清单中。在某些情况下,作为电力购买协议 (PPA) 或公用事业绿色电力或绿色关税计划的一部分获取 REC 可能是有意义的,特别是当地方政府对支持当地可再生能源的其他策略有限制时。在这些情况下,REC 可以包含在清单中,但只能与不包含 REC 的清单并行。
永久业权酒吧的价值从 1975 年到 2007 年达到顶峰,增长了十倍(来源:Christie & Co)。在此期间的大部分时间里,大型酒吧地产都是由酒吧所有者公司 (PubCos) 利用廉价债务建造的。然而,在 2007 年,市场陷入停滞,近年来,出现了戏剧性的逆转,价值下跌。大部分下跌是由于金融危机对 PubCos 的影响,因此他们不得不出售资产来偿还债务。饮料销售的竞争压力和休闲时间使用模式的改变加剧了这种下降,这些因素共同给传统的捆绑式酒吧租赁模式带来了巨大压力。这种模式变得越来越不经济,尤其是在农村地区。
农业 4 捆绑式堆肥生产和土壤应用 4 碳矿化 4 牧场堆肥添加 4 饲料添加剂 4 改进灌溉管理 4 粪便甲烷消化器 4 氮管理 5 水稻减排 5 固体废物分类 5 可持续农业 5 碳捕获和储存 6 碳捕获和提高石油采收率 6 混凝土中的碳捕获 6 塑料中的碳捕获 6 化学过程 6 己二酸生产中的 N2O 破坏 6 硝酸生产中的 N2O 破坏 6 环氧丙烷生产 7 SF6 替代 7 ** 制冷剂相关项目类型 ** 7 先进制冷剂 7 HFC 制冷剂回收 7 泡沫生产中的 HFC 替代 7 HFC23 破坏 7 臭氧消耗物质回收和破坏 8 制冷剂泄漏检测 8 林业和土地利用 8造林/再造林 8 避免森林转化 8
“重新思考食品市场和价值链以实现包容性和可持续性”倡议旨在提供证据,说明哪些类型的捆绑式创新、激励结构和政策最有效地在不断增长的食品市场中创造更公平的收入和就业机会,同时减少食品行业的环境足迹。该倡议针对六个地理区域的约 30,000 名个人,重点关注四个关键创新领域:垂直协调模式、产品质量认证、数字物流和金融创新,以及全球知识评估。评估该倡议影响的方法是基于理论方法的组合,明确侧重于影响评估阶段的过程追踪 (PT)。评估旨在反思该倡议的成功和经验,同时加强 CGIAR 对 PT 等基于理论的方法的实践,并整合“因果热点”和结果收获等创新技术以进行更细致的分析。
图 3-1. 缅因湾水深测量 ...................................................................................................................................................... 4 图 3-2. 深水条件下海上风能传输链路的典型组件* ........................................................................................ 6 图 3-3. 半潜式(左)和驳船式(右)浮动 OSP 概念 ............................................................................................. 7 图 3-4. 浮动变电站的设计概念 ............................................................................................................................. 8 图 3-5. 深水固定基础类型 ............................................................................................................................................. 9 图 3-6. 水下海上变电站概念 ............................................................................................................................. 11 图 3-7. 典型的海上 HVAC 径向链路 ............................................................................................................................. 12 图 3-8. 典型的海上 HVDC 径向链路 ............................................................................................................................. 12 图 3-9. 根据传输距离选择交流还是直流 ............................................................................................................. 13 图 3-10.图 3-11. 基于 VSC-HVDC 的输电技术的可用额定值 ............................................................................................................. 15 图 3-11. 电缆传输功率-距离曲线 ............................................................................................................................. 17 图 4-1. 定制(径向)传输示意图* ............................................................................................................................. 19 图 4-2. 捆绑式海上输电设计* ............................................................................................................................. 20 图 4-3. 具有海上平台互连的海上电网* ............................................................................................................. 21 图 4-4. 典型的协调输电规划流程 ............................................................................................................. 22
鉴于其广泛的应用,包括在纤维剪接,捆绑式风扇中/扇出,模式耦合,编写光栅和光纤绘制的情况下,必须准确了解多核纤维(MCF)的内部核心分布(MCFS)。然而,由于测量精度决定了产品的性能,因此可用于精确测量纤维核心分布的有限方法的广泛使用受到限制。在这项研究中,提出了基于贝塞尔束照明的侧视图和非破坏性方案,用于测量七核纤维的内部核心分布。贝塞尔束在散射介质中提供较大的焦距,并在具有空间变化的折射率变化的外轴介质中传播时表现出独特的图案。结果表明,在贝塞尔梁的情况下,较长的焦距和独特的模式会影响图像对比,这与典型的高斯梁不同。此外,使用数字相关方法证明了基于贝塞尔束的七纤维核心分布的高精度测量。一种深度学习方法用于将测量精度提高到0.2°,精度为96.8%。所提出的侧视图基于贝塞尔束的方法具有处理更复杂的MCF和光子晶体纤维的潜力。
阿丽亚娜 6 号将是一种 60 米高的一次性、模块化和重型运载火箭,满载时重达 900 吨,能够以两种主要配置飞行:阿丽亚娜 62 和阿丽亚娜 64。阿丽亚娜 62 将使用两个 P120C 捆绑式固体火箭助推器 (SRB),将 10,300 公斤的载荷送入低地球轨道 (LEO) 或将 4,500 公斤的载荷送入更远的地球静止转移轨道 (GTO)。与此同时,阿丽亚娜 64 配置将配备四台 SRB,辅助动力增加一倍,将更重的有效载荷送入低地球轨道 (LEO) 或将 11,500 公斤的载荷送入 GTO(ESA,nd - b;航空航天技术,nd)。阿丽亚娜 62 将在 14 米或 20 米整流罩中承载有效载荷,而功率更大的阿丽亚娜 64 则只能运载需要 20 米整流罩的有效载荷。两种整流罩均位于直径为 5.4 米的火箭顶端,由于采用了碳纤维聚合物复合材料外壳(ESA,nd - b),可在上升冲击期间保护有效载荷。当火箭达到不再需要担心大气摩擦的高度时,整流罩将被抛弃。