摘要:为了实现《巴黎协定》的目标,限制全球变暖需要进行重大的技术和行为转变。这一挑战推动了许多当前的建模趋势。本文回顾了 17 个最先进的递归动态可计算一般均衡 (CGE) 模型,并评估了它们用于表示部门能源和排放特征和动态的关键方法和应用模块。目的是提供技术见解,了解当前和未来能源和减排技术建模的最新进展,以及如何使用它们进行 20-80 年后的基线预测和情景。提供了数值说明。为了表示未来几十年可能发生的能源系统转型,现代 CGE 工具已经从自下而上的研究中吸取了教训。基线量化有三种不同的方法:(a)利用自下而上的模型特征来内生技术投资和利用的反应,(b)依靠外部信息源来提供模型的外生参数和变量,以及(c)将模型与更多技术丰富的部分模型相链接,以获得自下而上和路径一致的参数。
随着技术的持续发展,自动化的车辆技术从前开始了。理解影响个人易于自动化车辆的意图的因素至关重要。这项研究检查了用户愿意采用自动车辆的意愿。通过将年龄和教育背景纳入随机参数,构建了一个随机参数的有序概率模型,以分析影响受访者采用自动化车辆的影响因素。我们设计并进行了在线查询调查,收到了2105份有效的问卷。这些发现揭示了积极的社会信任,可感知的易用性,可感知的有用性,低水平的风险和自动化车辆的接受之间的显着相关性。此外,我们的研究还确定了外向性和开放性是塑造个人使用自动车辆的意图的强大调解人。此外,先前的辅助驾驶经验会对人们倾向于拥抱自动车辆的倾向。我们的研究还提出了促进自动化工具采用的见解:有利的媒体报道和合理的职责划分可以增强个人采用这项技术的意图。
•挪威:挪威还领导着欧洲首个跨管辖范围捕获倡议的发展,称为Longship,这将是一种新的枢纽型模型。挪威政府贡献了该项目成本的66%。Longship下的第一个商业项目是Northern Lights项目,该项目计划于2025年开始存储碳。•丹麦:丹麦政府和丹麦商会是Green的共同资金,这是一种促进可再生能源和碳捕获的智商。政府有三个补贴池计划,基于项目的时间长度而不是使用的方法。政府还通过提供资金和建立监管沙箱来长期确定性来支持实验性碳捕获项目,例如Amager Waste Center。•瑞典:作为《瑞典循环经济法》的一部分,在产品制造中存储和利用二氧化碳为制造商带来了重大税收减免。瑞典还于2023年6月开设了国家CCS国家中心,并专注于碳捕获和储存的研究机会。•冰岛:冰岛的Orca项目[案例研究1]是世界上最大的DAC工厂,它由地热能提供支持。支持者已经开始在第二个设施上工作猛mm象,预计每年将捕获多达36,000吨二氧化碳。
害虫侵扰平均造成 35% 的收获前损失,其中约 50% 的损失是由昆虫造成的,它们会降低生产力并影响农作物产量。此外,当使用农药控制害虫时,害虫还会对农场工人和消费者的健康构成风险。通过使用 PestNu AI 机器人诱捕器准确识别和监测害虫,农民可以采取更有针对性和更有效的害虫管理策略,减少有害化学品的使用并提高农业的安全性
人类获取信息的重要方式是通过语言,但语言经验是否以及如何驱动特定的神经语义表征仍然知之甚少。我们考虑了 3 种不同的语言计算原理(简单共现、网络(图形)拓扑关系和神经网络向量嵌入关系)捕获的统计属性,并测试了它们在多大程度上可以解释语义表征的神经模式,通过 2 个具有共同语义过程的功能性磁共振成像实验进行测量。不同的图形拓扑词关系,而不是简单的共现或神经网络向量嵌入关系,对前颞叶(捕获图形共同邻居)、下额回和后中/下颞回(捕获图形最短路径)中的神经模式具有独特的解释力。这些结果相对特定于语言:它们不能用感觉运动相似性来解释,并且相同的视觉对象计算关系(基于视觉图像数据库)在图片命名实验中对视觉皮层产生了影响。也就是说,语言中的不同拓扑属性以及语言和视觉输入的相同拓扑计算(共同邻居)被不同的大脑区域捕获。这些发现揭示了语言的图形拓扑属性的特定神经语义表征,突出了人类大脑中语义表征的信息类型特定和统计属性特定的方式。
法国蒙彼利埃 6. 华盛顿大学医学院医学系,美国密苏里州圣路易斯 63110 7. C2N Diagnostics,美国密苏里州圣路易斯 20 S Sarah St 63108 8. 德克萨斯大学奥斯汀分校戴尔医学院神经病学系,美国德克萨斯州奥斯汀 9. 英国伦敦大学学院痴呆症研究所 10. 瑞典默恩达尔萨尔格伦斯卡大学医院临床神经化学实验室 11. 神经科学与生理学研究所精神病学和神经化学系,
摘要 循环游离肿瘤 DNA (ctDNA) 可作为肿瘤负荷的实时生物标记,并能为了解在免疫疗法的选择性压力下癌症分子格局的演变提供独特的见解。追踪 ctDNA 中检测到的基因组变异格局可能会揭示转移级联的克隆结构,从而提高我们对治疗反应分子连接的理解。虽然液体活检可以快速准确地评估免疫治疗期间的肿瘤负荷动态,但单特征 ctDNA 分析无法完全捕捉抗肿瘤免疫反应的复杂性。这强调需要对肿瘤和免疫区进行综合研究,以了解肿瘤清除动力学与抗肿瘤免疫反应质量之间的关系。通过检测基因组生物标志物(例如肿瘤突变负荷和微卫星不稳定性),以及实时监测循环肿瘤负荷和评估早期治疗反应,ctDNA 检测在接受免疫检查点抑制剂治疗的患者中的临床应用已显示出预测和预后价值。这些努力凸显了液体活检在选择接受癌症免疫治疗的患者、监测治疗效果、确定最佳治疗持续时间以及最终指导治疗选择和排序方面发挥的新兴作用。免疫肿瘤学领域越来越多的 ctDNA 指导的介入临床试验推动了液体活检的临床转化,标志着液体活检在精准免疫肿瘤学中的实施迈出了关键一步。
摘要 循环游离肿瘤 DNA (ctDNA) 可作为肿瘤负荷的实时生物标记,并能为了解免疫疗法选择压力下癌症分子格局的演变提供独特的见解。追踪 ctDNA 中检测到的基因组变异格局可能会揭示转移级联的克隆结构,从而提高我们对治疗反应分子连接的理解。虽然液体活检可以快速准确地评估免疫治疗期间的肿瘤负荷动态,但单特征 ctDNA 分析无法完全捕捉抗肿瘤免疫反应的复杂性。这强调需要对肿瘤和免疫区进行综合研究,以了解肿瘤清除动力学与抗肿瘤免疫反应质量之间的关系。 ctDNA 检测在接受免疫检查点抑制剂治疗的患者中的临床应用已显示出预测和预后价值,通过检测基因组生物标志物(例如肿瘤突变负荷和微卫星不稳定性),以及实时监测循环肿瘤负荷和评估早期治疗反应。这些努力凸显了液体活检在选择接受癌症免疫治疗的患者、监测治疗效果、确定最佳治疗持续时间以及最终指导治疗选择和排序方面发挥的新兴作用。免疫肿瘤学领域越来越多的 ctDNA 指导的介入临床试验推动了液体活检的临床转化,标志着液体活检在精准免疫肿瘤学中的实施迈出了关键一步。