了解鱼类寻找猎物和繁殖的地点对于了解其种群动态至关重要(Free、Jensen 等人,2021 年)。体型较大的高级食肉动物,例如通常寿命较长、繁殖力较低的鲨鱼,以表现出非凡的季节性迁徙模式而闻名(Nasby-Lucas、Dewar 等人,2019 年)。这些运动将受到海洋条件的调节,捕食者和猎物物种都会利用海洋洋流、海底水深测量和首选栖息地的环境因素(Chen、Shan 等人,2021 年)来提高个体生存和种群持续或扩张的机会。传统渔业管理决策依赖于目标和兼捕物种的基本生物学信息以及捕捞量和生物量估计值的可用性,以提供资源评估的基础,从而在战略捕捞目标的背景下提出建议(Punt 和 Hilborn 1997,Maunder 和 Punt 2013)。这些目标通常旨在确保在渔民追求捕捞目标时种群不会减少,或者在资源枯竭时促进恢复轨迹的逆转(Dainys、Jakubavičiūtė 等人 2022)。无论如何,在基于模型的评估中,通常会对生长和繁殖做出假设以估计补充参数,从而导致其输出的不确定性。替代的和越来越普遍应用的经验方法也具有不确定性,需要任意选择的参考点作为相对测量值,其保守性根据目标物种已知的生活史特征而变化(Bi、Zhang 等人 2023)。这些策略需要对生物量进行估计或替代测量,通常适用于商业渔业,因为管理涉及对总捕捞量的产出控制(Punt 等人,1997 年;Ovando、Free 等人,2022 年)。这些方法存在问题,并且与适用于休闲垂钓者的每日捕捞量、船只捕捞量或持有量限制相比,它们大多不适用于休闲行业(Ford 和 Gilmour,2013 年)。
图 1-1 西部群岛基础设施位置 12 图 1-2 西部群岛设施布局 13 图 2-1 西部群岛(巴拉岛和哈里斯岛)油田布局 23 图 2-2 环境影响评估流程 26 图 3-1 沙洲结构布置 33 图 3-2 系泊桩和锚链布置 34 图 3-3 捆包内部布置 43 图 3-4 项目进度表 47 图 3-5 废物层次结构 51 图 3-6 西部群岛基础设施材料库存估算饼图 54 图 4-1 西部群岛区域内的调查工作 57 图 4-2 海豹在海上的存在情况(Russell 等人,2017 年;Carter 和 Russell,2020 年) 65 图 4-3 保护区相对于西部群岛 FPSO 的位置 68 图 4-4 西部群岛区域的平均捕捞价值 71 图 4-5 平均捕捞努力西部群岛地区的捕捞强度 72 图 4-6 PL3186 上的捕捞力度、捕捞强度以及与渔船相关的 AIS 轨迹 73 图 4-7 按渔具类型划分的捕捞强度 74 图 4-8 西部群岛开发项目相对于其他海上用户的地理位置 76 表 1-1 退役计划摘要 14 表 1-2 项目进度表 15 表 1-3 环境和社会敏感性 15 表 2-1 退役计划摘要 25 表 3-1 海底设施和稳定功能信息 27 表 3-2 管道/出油管/脐带缆信息 35 表 3-3 海底管道保护和稳定功能 44 表 3-4 废物流管理过程 52 表 3-5 西部群岛基础设施细分 53岩石) 53 表 4-1 全年 ICES 矩形 51F0 中的鱼类育苗和产卵情况(Coull 等人,1998;Ellis 等人,2012) 63 表 4-2 区块 210/24 和 201/25 的 SOSI(Webb 等人,2016) 67 表 4-3 2016 年至 2021 年 ICES 矩形 51F0 中的上岸重量和价值(苏格兰政府,2022) 70 表 4-4 2016 年至 2021 年 ICES 矩形 51F0 的捕捞努力量(捕捞天数)(苏格兰政府,2022) 70 表 4-5 西部群岛 FPSO 50 公里范围内的水面资产 75 表 5-1 影响识别 81 表 5-2 GWP (100 年期)相关温室气体(Te CO2e;IPCC,2021 年)88
1. 简介 澳大利亚国家海洋资源与安全中心 (ANCORS) 正在开始一项新的研究,研究捕捞战略的制定和实施及其与国家和地区分配计划的相互作用。我们期待在会议间隙与代表们进一步讨论这项研究。与此同时,我们将提供案例研究的初步审查。我们打算在收到反馈和进一步分析后,于 2020 年将其进一步发展为一项综合研究。 Quentin Hanich 副教授将出席 WCPFC,并可提供有关该研究的更多信息,您也可以通过 hanich@uow.edu.au 联系他。 西中太平洋渔业委员会 (WCPFC) 在金枪鱼区域渔业管理组织中独树一帜,因为小岛屿发展中国家专属经济区的捕捞量意义重大,而且它们对养护和管理谈判具有集体影响。这使得 WCPFC 能够在其水域内主要发生的渔业捕捞战略的制定方面取得重大进展。
欧洲海洋环境中的渔业使用不同类型的移动和静态渔具,这些渔具会接触到海床,包括在水中和海床上拖曳的移动式触底渔具 (MBCG)。本研究探讨:在欧盟海洋保护区 (MPA) 中,可以部署哪些创新渔具来替代底拖网捕捞;实施此类创新的有效性和可行性;以及对维持和恢复生物多样性的环境和社会经济影响。研究表明,通过创新减轻对海床的影响可能不足以实现保护目标。由于缺乏自愿采用,最有前景的创新必须强制实施。它建议将 MBCG 排除在被认为易受底捕捞影响的指定 MPA 之外。到目前为止,缺乏对影响较小的渔具的创新或不影响捕捞率的解决方案。当渔民增加努力来弥补捕捞效率的损失时,这会导致影响的净增加。排除 MBCG 可能只会带来有限的位移效应,如果未来的 MPA 指定能够更好地匹配需要保护的敏感特征,这种效应可能会更大。目前,不需要停止使用其他捕鱼技术(例如被动渔具),因为它们不会影响存在脆弱海床的 MPA。然而,一些 MPA 对被动渔具很敏感,如果创新不能将脆弱物种的兼捕量减少到欧盟共同渔业政策和海洋战略框架指令认为可接受的水平,则应限制这些技术。
简介 2019 年 7 月 9 日,美国国家海洋渔业局 (NMFS) 根据 2019 年 4 月的资源评估结果,确定太平洋沙丁鱼北部亚种群 (NSP) 遭受过度捕捞,估计该种群数量低于《沿海远洋物种 (CPS) 渔业管理计划 (FMP)》规定的 50,000 公吨 (mt) 最低资源规模阈值 (MSST)。为满足《马格努森-史蒂文斯渔业养护和管理法案》(MSA) 规定的两年重建计划实施时间表,太平洋渔业管理委员会 (Council) 打算在 15 个月内向国家海洋渔业局 (NMFS) 提交一份拟议的重建计划,以确保有足够的时间实施该计划(如果获得批准)。 1.1 目的和需求 拟议行动的目的是制定太平洋沙丁鱼 NSP 的重建计划。重建计划需要符合 MSA 的要求,以重建已被宣布过度捕捞的鱼类种群。1.2 行动区域 行动区域包括并限于美国西海岸专属经济区 (EEZ)。1.3 重建要求 MSA 满足国家计划的需要,以防止过度捕捞、重建过度捕捞的鱼类种群、确保保护并充分发挥国家渔业资源的潜力。一旦确定某种鱼类种群被过度捕捞,理事会就会收到通知,并在两年内实施符合 MSA 要求和适用的 FMP 的重建计划。重建计划可以采用 FMP 修正案或旨在重建受影响鱼类种群的法规的形式。重建计划必须指定少于 10 年的重建时间段,除非鱼类种群的生物学、其他环境条件或国际管理措施另有规定。MSA 国家标准 1 (NS1) 指南为理事会提供了有关如何确定以下重建计划要素的具体指导:
.................................................................................................................................................... 61 图 24 DLM 估计的时间序列中每个种群的估计趋势。 ... 62 图 25. 在夏季在参考点进行的浮潜调查中,每 5 公里成年夏季钢头鳟的年峰值数量。参考点位于奥林匹克国家公园的六条河流中,X 轴的标签报告了每年重复调查的次数 n。计数包括自然和孵化场来源的成年鳟鱼(见表 5)。详情请参阅 Brenkman 和 Connolly (2008)。 ............................................................................................................. 64 图 26. 在连续浮潜调查中计数的成年夏季钢头鳟的分布和相对丰度(见表 6)。成年钢头鳟的纵向剖面以 1 公里的空间尺度绘制,以箱长表示。 ........................................................................................... 68 图 27. 估计冬季径流种群的 15 年逃逸趋势(切断后总逃逸量)。点显示估计的随时间变化的趋势和个别种群的 95% 置信区间。15 年窗口的结束时间是 x 轴上的年份。仅显示至少有 2 个观测值(数据点)位于前 5 年且有 2 个观测值位于后 5 年的 15 年窗口。请注意,海峡 JF 组中的种群要小得多(图 22)。 ........................................................................................................................................... 70 图 28. 估计的 Busby(1977-1994 年)和后 Busby(1995-2022 年)时期的冬季径流种群的逃逸趋势(切断后总逃逸量)。点显示估计的趋势和 95% 置信区间。 ........................................................................................................................... 72 图 29. 冬季径流库存的 15 年平均逃逸量估算值(截断后的总逃逸量)。各点显示截至 x 轴年份的 15 年期间各个库存的估计平均值。仅显示至少有 2 年在前 5 年、2 年在后 5 年的 15 年窗口。x 轴上的年份是 15 年期的结束年份。 ........................................................................................................................... 74 图 30. 冬季径流库存的平均逃逸量估算值(3 月 15 日截断后的总逃逸量),前期(1989-1993 年)和后期(2018-2023 年)。请注意,y 轴为 log10 刻度。 ........................................................................................................................... 75 图 31.联合管理者报告的自然(3 月捕捞期后逃逸)冬季洄游鲑鱼的捕捞死亡率。这是捕捞量/捕捞量。娱乐性钓鱼(捕获和释放)死亡率仅包含在霍河数据中。...................................................................................... 78 图 32. 有捕捞和无捕捞期间 OP 鲑鱼海峡种群增长的一年估计值。估计值来自 DLM 输出。垂直线显示平均值和 95% 置信区间。............................................................................................................. 80 图 33. 有捕捞和无捕捞期间 OP 鲑鱼海峡种群的种群增长率。估计值来自 DLM 输出。垂直线显示平均值和 95% 置信区间。............................................................................................................. 81 图 34. 联合管理者报告的自然(3 月捕捞期后)冬季洄游鲑鱼逃逸和捕捞的原始数据。 ........................................................................................................... 83 图 35. 估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。 ............................................................................................................................................. 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(摘自 Moore 1960 年)。 ............................................................................................................................................. 88估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。...................................................................................................................................................... 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(来自 Moore 1960)。...................................................................................................................................................... 88估计的对数尺度种群增长率(亩)、估计的年收获死亡率(F)和净种群增长率(亩 + F)。对于“F”和“亩 + F”,每个点代表特定年份的估计值。所有参数均显示平均值和 95% 置信区间。...................................................................................................................................................... 84 图 36. 1946-1960 年奎诺尔特河虹鳟鳃和定置网收获量。(来自 Moore 1960)。...................................................................................................................................................... 88
• 淡水养殖(85%) • 咸水养殖(15%) • 咸水养殖(0.5%) • 海水养殖(可忽略不计) • 捕捞渔业:占鱼类产量的 1/3