正在进行的构建量子计算机的努力基于各种物理实现。最成熟的实现之一是基于保罗阱中的捕获离子,其中量子位被编码在离子价电子的内部状态中,并使用自旋相关力进行纠缠,将离子的内部状态与其集体运动耦合 [1]。捕获离子的优势在于它们表现出超过 10 分钟的相干时间 [2-4] 和灵活的连接 [5,6]。此外,单量子位门的每个门错误率已低至 10 − 6 [7,8],多量子位门的每个门错误率低至 10 − 3 [9-11]。然而,与超导量子位(约 10 纳秒)相比,离子之间的多量子位操作通常相对较慢(约 10 μ s)。此外,冷却、制备、读出和控制数千个捕获离子量子比特所需的光学技术仍处于起步阶段 [ 12 – 14 ]。在这里,我们对基于捕获电子的量子计算进行了可行性研究。电子对量子计算很有吸引力,因为它们非常轻,是一个天然的两级自旋系统(量子比特),具有足够大的磁矩,可以用成熟的微波技术和热库来操纵,从而无需量子比特控制光学器件。相对于捕获离子,质量减少了四个数量级,增加了捕获势中粒子的运动频率,从而提高了多量子比特操作和传输的速度。此外,电子的两级自旋结构消除了传统原子和固态的某些复杂性
免责声明 本文件为美国政府机构赞助工作的记录。美国政府、劳伦斯利弗莫尔国家安全有限责任公司及其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定商业产品、流程或服务并不一定构成或暗示美国政府或劳伦斯利弗莫尔国家安全有限责任公司对其的认可、推荐或支持。本文表达的作者观点和意见不一定代表或反映美国政府或劳伦斯利弗莫尔国家安全有限责任公司的观点和意见,不得用于广告或产品代言目的。
在 3.5 至 8.5 eV 的能量下观察到,并且形成截面低两到三个数量级。未记录长寿命分子离子。在 DFT CAM B3LYP/6-311 + G(d,p)近似中的计算预测存在六种稳定的阴离子结构,其中氯阴离子通过非共价 H − Cl − − H 键与中性残基配位。这些结构中最稳定的电子亲和力与实验测量值 EA a = 0.2771±0.003 eV 相一致。这些结果与先前获得的关于溴取代联苯、萘和蒽分子的 DEA 数据一致,并证实了具有非共价 H − Hal − H 键的阴离子结构的存在。这种非共价阴离子结构应该极具反应性,这使得它们有望用于合成自组装碳氢化合物纳米膜。
摘要:制备了NiO/β-Ga2O3异质结栅场效应晶体管(HJ-FET),并通过实验研究了在不同栅极应力电压(VG,s)和应力时间(ts)下器件的不稳定性机制。发现了器件在负偏压应力(NBS)下的两种不同退化机制。在较低的VG,s和较短的ts下,NiO体陷阱捕获/脱捕获电子分别导致漏电流的减少/恢复。在较高的VG,s或较长的ts下,器件的传输特性曲线和阈值电压(VTH)几乎永久地负移。这是因为界面偶极子几乎永久地电离并中和了异质结界面上的空间电荷区(SCR)中的电离电荷,导致SCR变窄。这为研究NiO/β-Ga2O3异质结器件在电力电子应用中的可靠性提供了重要的理论指导。
量子通信背景:二维材料中的单光子发射器 (SPE) 已成为量子技术和量子通信的有前途的平台。这些发射器能够产生单个光子,这对于安全通信、量子计算和其他需要操纵量子态的应用至关重要。过渡金属二硫属化物 (TMD) 等二维材料由于其原子级薄性质、强激子效应以及与其他量子器件集成的潜力,为实现 SPE 提供了独特的环境。在这些材料中,缺陷、应变和局部激子可以捕获电子和空穴,从而导致单光子的发射。此外,二维材料提供可调的电子和光学特性,可以更好地控制发射特性,例如波长和偏振。此外,基于二维材料的 SPE 的可扩展性和与现有光子和光电器件的集成使其成为未来量子技术的有力候选者。
在过去的几年中,基于Algan/GAN异质结构的设备因其物质特性而受到了极大的关注,包括宽带,高电子迁移率和二维电子气体(2DEG)的高密度,使其成为高功率和高频应用的最佳选择之一。然而,在散装或表面上存在几个不同性质的陷阱,阻碍了这些设备的性能,其行为的不良变化并限制了其可靠性[1]。捕获gan设备中的效果是显着的,这是两个有趣的原因。首先,它们可以通过捕获电子来耗尽2DEG,从而减少电流。第二,它们的缓慢性质会导致频率分散,从而限制了它们的动态性。最近,已经使用了多种技术来研究捕获机制的行为[2-4],这是由阻抗测量组成的最流行方法之一,允许查找电荷陷阱的激活能(E A)。晶体管中的表面和散装陷阱通常与经典的小信号等效电路并行或串联为RC电路建模,从而捕获设备输出阻抗的频率分散体。为了确定陷阱的参数,必须以广泛的温度(首先进行)进行AC表征,因为陷阱机制的影响在降低温度时会增加,其次,因为人们可以观察到电荷释放的热激活。
摘要 — 我们研究了具有 TiN/Hf 0.5 Zr 0.5 O 2 /SiO 2 /Si (MFIS) 栅极结构的 FeFET 在耐久疲劳过程中的电荷捕获。我们提出了一种通过测量金属栅极和 Si 衬底中的电荷来实验提取存储器操作期间捕获电荷数量的方法。我们验证了在耐久疲劳过程中捕获电荷的数量会增加。这是第一次通过实验直接提取捕获电荷并验证其在耐久疲劳过程中会增加。此外,我们模拟了耐久疲劳过程中捕获电荷和铁电极化切换之间的相互作用。通过实验结果和模拟数据的一致性,我们证明了随着存储窗口的减小:1) Hf 0.5 Zr 0.5 O 2 的铁电特性没有降低。2) 栅极堆栈上带隙中的陷阱密度增加。3) 存储窗口减小的原因是编程操作后捕获电子增加,而与空穴捕获/去捕获无关。我们的工作有助于研究FeFET的电荷捕获行为和相关的耐久疲劳过程。