用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过下一代测序使用 Illumina 平台或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
用途:EpiNext™ CUT&RUN Fast Kit 旨在从低输入细胞/染色质中快速富集与蛋白质(组蛋白或转录因子)复合的特定 DNA,并通过 Illumina 平台的下一代测序或 qPCR 等其他方法识别或绘制体内蛋白质-DNA 相互作用。该试剂盒的创新工作原理、优化的协议和组件允许在最小化非特异性背景水平的情况下捕获目标蛋白质/DNA 复合物。捕获的 DNA 特别适合构建非条形码(单重)和条形码(多重)文库,以更少的偏差和更高的分辨率绘制目标蛋白质-DNA 相互作用区域。输入量:对于细胞,通常,每个反应的量可以是 2 x 10 3 到 2 x 10 5 个细胞。为了获得最佳制备效果,细胞输入量应为 1 x 10 5 ,尽管从 EpiNext™ CUT&RUN Fast Kit 获得的修饰组蛋白测序数据只需 500 个细胞即可获得。对于从细胞或组织中分离的染色质,每个反应的量可以是 0.1 µg 至 5 µg 的染色质。为了获得最佳制备效果,染色质输入量应为 2 µg。起始材料:起始材料可以包括各种哺乳动物细胞样本,例如来自烧瓶或培养皿的培养细胞、原代细胞或从血液、体液、新鲜/冷冻组织(预制备的染色质)中分离的稀有细胞群,以及从整个细胞群和胚胎细胞中分选出的特定细胞等。抗体:抗体应为 ChIP 级,以便识别与 DNA 或其他蛋白质结合的蛋白质。如果您使用的抗体尚未经过 ChIP 验证,则应使用适当的对照抗体(例如抗 RNA 聚合酶 II、抗 H3K4me3 或抗 H3K27me3)来证明抗体适用于 ChIP。内部对照:此试剂盒中提供了阴性和阳性 ChIP 对照。注意事项:为避免交叉污染,请小心地将样品或溶液移入 PCR 管中。使用气溶胶屏障移液器吸头,并在液体转移之间始终更换移液器吸头。整个过程中都要戴手套。如果手套和样品接触,请立即更换手套。
检查、加油、升级、维修或救援卫星,清除轨道碎片,以及建造和维护大型轨道资产和基础设施等要求对于在轨空间基础设施的维护非常重要。到目前为止,所有值得注意的维修任务都是由宇航员舱外活动 (EVA) 在低地球轨道 (LEO) 上执行的。然而,这些操作风险大、成本高、速度慢,有时甚至不可行。EVA 可以被机器人在轨维修 (OOS) 取代,在此期间,任务由空间机械手系统 (SMS) 执行,在文献中也称为追逐者或服务者。它们由一个卫星基座组成,该基座配备一个或多个带有抓钩装置的机器人机械手(臂),并由视觉系统驱动,从而能够捕获目标(客户)卫星。SMS 也可以是安装在空间设施上的大型维修机械手。本研究课题重点关注在轨操纵和捕获,以及与这些活动相关的方面。因此,它包括与刚性和柔性 SMS 的动力学、相关的接触动力学、空间系统的识别方法、监控和控制所需的姿势和状态感测、抓取目标的运动规划方法、运动或交互任务期间的反馈控制方法以及此类系统的地面测试试验台相关的工作。该研究主题包括五篇文章。在《从空气轴承支撑的测试数据估计空间机械手的振动特性》中,李等人从理论和实验上研究了与平面实验测试试验台相关的问题,该试验台使用空气轴承垂直支撑缩放 SMS 并在平面上创建零重力环境。作者指出,空气轴承会影响缩放 SMS 的动力学行为,从而影响其表观关节的刚度和阻尼、固有频率和振动响应。作者提出了一套程序来消除空气轴承的影响,并从电机制动系统的测试数据中识别真实的等效关节刚度和阻尼。识别惯性特性,并使用遗传算法确定等效关节刚度和阻尼。通过消除空气轴承引起的额外惯性,可以估算出机械手的真实振动特性。在《废火箭级在轨机器人抓取:抓取稳定性分析和实验结果》中,Mavrakis 等人研究了废火箭级的抓取,分析了抓取稳定性,并展示了实验结果。提出了一种评估废火箭级机器人抓取稳定性的新方法,该方法基于计算 Apogee Kick Motor 喷嘴的两指抓取的固有刚度矩阵,并将稳定性指标定义为局部接触曲率的函数,材料特性、施加的力和目标质量。稳定性指标是
b'sandwich排列,其中包含捕获目标 - 信号探针。随后通过监测观察到的亚甲基蓝(MB)的峰值电流变化来检测所得的DNA杂交事件,该峰值电流变化被用作氧化还原物种,并实现了35 AM的检测极限。Wang等。 [5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。 [6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。 Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Wang等。[5]基于RGO和锰四苯基孢子的A \ XCF \ X80-偶联结构的自组装纳米复合材料开发了DNA生物传感器,导致6 \ xc3 \ x9710 14M的检测极限,在另一项研究中,在另一项研究中,Ye等。[6]采用了一个转导界面,该界面由捕获的DNA序列,Aunps和Thionines在玻璃碳电极上官能化RGO来构建无标记的DNA生物传感器,并获得了4.28 \ xc3 \ x9710 199的检测极限。Chen等。 [7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。 DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。 Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Chen等。[7]还基于由氧化铜纳米线和羧基官能化的单壁碳纳米管(SWCNT)组成的杂化纳米复合材料(SWCNTS)开发了特定的序列DNA检测。DNA检测是通过循环伏安法和3.5 \ xc3 \ x9710 15 m的检测极限。Zhou等。 [8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。 他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。 在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。Zhou等。[8]使用化学上的RGO电极通过差分脉冲伏安法对ssDNA和dsDNA中的四个DNA碱基的无标记电化学检测进行了。他们达到了2.0 \ XCE \ XBC M的检测极限,线性浓度范围为0.01至10 mm。在另一项研究中,Zhang等人。 [9]为特定序列检测制造了无标记的DNA传感器。在另一项研究中,Zhang等人。[9]为特定序列检测制造了无标记的DNA传感器。将DNA固定在用石墨烯,Aunps和Polythionine(Pthion)修饰的玻璃碳电极上。通过不同的脉冲伏安法检测到杂交,并且在0.1 pm至10 nm的动态范围内达到了35 fm的检测极限。Bo等人开发了石墨烯和聚苯胺的电化学DNA生物传感器。[10]用于DPV检测辅助DNA序列,并达到了'