尽管电池电动汽车和氢燃料电池汽车在减少二氧化碳排放方面大有可为,但电气化运输仍有一些领域尚未解决,例如重型和远程全球航运业。在本观点中,我们研究了使用碳氢化合物或酒精燃料进行二氧化碳中性运输的可行性,其中二氧化碳产物在车辆上被捕获。这种方法充分利用了碳基燃料无与伦比的能量密度,而这正是这些能源密集型应用所需要的。我们考虑了所需的电力技术、基础设施和燃料,提出了一个概念。我们计算了多种车型的存储量和质量要求,并将其与其他二氧化碳中性选择(即氢燃料电池和电池电动汽车)的存储量和质量要求进行了比较,并讨论了实施该技术的研究和开发需求。
市场上有很多推拉门。然而,没有一种适合 B 级区域。直到现在。Cleangrad 密封推拉门 C-HSD-ALU 配有自动化装置,由公司内部开发,完全符合 B 级和 C 级洁净室区域的 GMP 要求。无论是铝、HPL 还是不锈钢饰面,密封推拉门都适用于所有墙体系统,并与任何类型的地板完全齐平。没有地板导轨和可移动部件,但在技术区域配备了带颗粒捕集器的导轨和控制单元,可以快速轻松地进行维护,而不会干扰洁净室。为了确保安全级别,这些门已通过 ZAG 和 SIQ 研究所的认证。
持续的潮汐循环使大部分珊瑚礁没有淤泥状沉积物,但封闭的 Muaivuso 泻湖除外,它充当了淤泥状沉积物的捕集器。在旱季,当信风吹起时,礁滩会受到海浪的影响。此时,较粗的沉积物可能会被夹带并移过礁滩。在雨季,礁滩通常很平静,尽管可能会形成飓风和热带风暴。1953 年,一场海啸袭击了苏瓦地区,将几米大小的石灰石块抛到礁滩上,其中一些石灰石块被随后的飓风吹向岸边。在规模小得多但同样重要的范围内,许多生物侵蚀者不断从内到外破坏沉积物。它们包括蓝绿藻、棘皮动物和鹦鹉鱼。
在过去的 15 年里,被称为立方体卫星 (CubeSat) 的小型卫星已被用来研究太空环境对生物体的影响。迄今为止,所有生物立方体卫星任务均在低地球轨道 (LEO) 上进行研究,每个任务都比上一个任务改进了其生物支持子系统。NASA 即将发射的生物立方体卫星任务 BioSentinel 将作为 Artemis 1 的次要有效载荷发射,最终到达低地球轨道以外的太阳中心轨道,并受到地球磁层的保护。BioSentinel 的主要目标是 1) 研究深空辐射环境的生物影响和 2) 发展我们的技术能力以支持深空生物研究。BioSentinel 中的仪器和子系统继承了之前的立方体卫星任务(例如流体学、光学、热控制),但在许多层面上得到了扩展。 BioSentinel 改进了材料和设计(例如,降低卡片的蒸汽渗透性以保持低湿度;增加了带有内部止回阀、干燥剂室和气泡捕集器的流体歧管,用于每个单独的流体卡),并增加了新的发现工具(例如,机载 LET 光谱仪)。本期观点的主要目的是强调过去和正在进行的 NASA 生物立方体卫星任务中使用的流体系统的演变,并强调这些系统可以优化以用于未来 LEO 以外的实验的方面。
水库 - 来源的开发和选择 - 来源水质 - 表征 - 意义 - 饮用水质量标准 - 域名规定。II单元收集和输送水9供水 - 摄入结构的设计和设计 - 功能;水的管道和导管 - 管道材料 - 管道中流量的液压 - 传输主要设计 - 管道的铺设,接合和测试 - 附件 - 泵的类型和容量 - 泵和管道材料的选择。第三单元常规水处理9目标 - 单位操作和过程 - 水处理厂单位,曝气机,闪光灯搅拌机,凝结和絮凝的原理,功能和设计 - 澄清器捕集器板和管子的设计 - 脉冲设置和脉动脉动设置 - 脉动器澄清器 - 砂滤器 - 砂质过滤器 - 拆卸 - 持续管理 - 持续管理和维护方面。第四单元先进的水处理9水软化 - 铁和锰的去除 - 放流 - 吸附 - 脱盐 - R.O.工厂 - 脱矿化过程 - 离子交换 - 膜系统 - RO拒绝管理 - 操作和维护方面 - 最近的进步。单元V供水和供应9水分配的要求 - 组件 - 管道材料的选择 - 服务储层功能 - 网络设计 - 分销网络分析 - 附录 - 泄漏检测。建筑物中供水设计原理 - 房屋服务连接 - 固定装置和配件,管道系统以及管道类型 - 最新的NBC规定。
可再生能源 2022 年 2 月 21 日——阿亚拉集团旗下上市能源平台 ACEN 已启动菲律宾首个混合太阳能和储能项目。位于拉古纳省阿拉米诺斯的试点 40 兆瓦储能项目将使该公司能够评估在 ACEN 投资组合中更有效地储存能源的机会,旨在为该国提供可持续和可靠的能源。2x20 兆瓦储能设施毗邻 ACEN 的 120 兆瓦阿拉米诺斯太阳能发电场,配置为帮助管理内部电力需求,在太阳能发电厂发电但需求低时储存电力,并在需求高时提供快速充电。它还将为国家电网提供辅助服务。该设施拥有 24 个装有 SAFT 2.5 MWh 锂离子电池的电池容器,足以为大约 20,000 户家庭供电,每年可避免 35.87 MTCO2e 排放。 “我们很高兴开始运营 ACEN 的第一个电池储能项目,”ACEN 总裁兼首席执行官 Eric Francia 表示。“随着这项技术的可行性和竞争力不断提高,我们将寻求增加对储能的投资。” “我们正在利用电池储能技术的快速响应、可扩展性和易于集成到我们的可再生能源项目中的优势,”ACEN 首席开发官 Jose Maria Zabaleta 表示。“借助 Alaminos 储能项目,我们可以在可再生能源变化中更有效地利用可再生能源,同时提高电网的运行能力并确保高可靠性。” Alaminos 太阳能和储能混合设施以其开创性的可持续发展中心而闻名,工厂周围是阿亚拉土地的碳森林,这是一个林地保护区,可充当碳捕集器和生物多样性的家园。还整合了一个塑料回收设施来试行循环方法,将塑料废物从垃圾填埋场转移到生态砖中,并用于工厂内的设施建设。随着未来生态学习中心的建设,ACEN 旨在提高人们对各种气候行动计划的认识,例如对于保护和恢复自然生态系统至关重要的基于自然的解决方案。
半胱氨酸 (Cys) 和蛋氨酸 (Met) 对陆地 S 循环至关重要,因为它们是植物营养和微生物生长所需的碳 (C)、氮 (N) 和硫 (S) 来源。然而,土壤微生物预计会争夺这些 S-氨基酸中的 C、N 和 S。我们假设,由于植物的 C 输入较低,植物生产力低的土壤中的微生物竞争会更激烈。在这里,我们将 14 C 标记的 Cys 和 Met 添加到从海拔驱动的原始草地生产力梯度收集的 5 种土壤中,然后我们用离心排水程序在 60 分钟内测量微生物吸收,然后用 NaOH 捕集器在 48 小时内测量随后的矿化。我们的结果表明,Cys 和 Met 都被土壤微生物迅速吸收,半衰期从 0.34 到 2.14 分钟不等,比通过测量 14 CO 2 释放确定的半衰期快一个数量级(或更多)。微生物从土壤溶液中去除 14 C 和随后释放 14 CO 2 之间存在相当大的延迟,这表明草原土壤中 Cys 和 Met 的降解主要通过生物过程发生。土壤微生物对 Cys 和 Met 的吸收主要由高亲和力运输系统 (0.01 – 0.1 mM) 控制,而亲和力较低的运输系统在较高底物浓度 (1 – 100 mM) 下变得更为重要。此外,在生产力较低、海拔较高的地区,Cys 和 Met 的微生物吸收和矿化率下降,这表明有机 N 和 S 的周转以及随后植物吸收的有效性可能受土壤肥力控制。我们得出结论,尽管 Cys 和 Met 可能代表土壤中 DON 和 DOS 库的小部分,但由于它们在草原土壤中的快速周转和补充率,它们对土壤微生物和植物营养的重要性可能被低估了。