损伤容限认为,尽管飞机可能存在亚临界裂纹和缺陷,但飞机仍能保持适航性。这一理念承认,不可能在整个飞机上建立完整的结构冗余。因此,损伤容限飞机的持续适航性在很大程度上取决于能够在裂纹和缺陷达到临界尺寸之前检测出它们的检查程序的实施。为了进一步加强满足损伤容限标准所需的维护和检查程序,联邦航空管理局于 1981 年发布了咨询通告 (AC) 91-56。该 AC 为飞机制造商和运营商提供了制定补充结构检查文件 (SSID) 的指南。SSID 提供了一种通过满足损伤容限要求来维持老式运输飞机持续适航性的计划。通过 SSID 计划,最初设计为故障安全型的飞机通过更新的检查程序基本上符合损伤容限理念。
损伤容限认为,尽管飞机可能存在亚临界裂纹和缺陷,但飞机仍能保持适航性。这一理念承认,不可能在整个飞机上建立完整的结构冗余。因此,损伤容限飞机的持续适航性在很大程度上取决于能够在裂纹和缺陷达到临界尺寸之前检测出它们的检查程序的实施。为了进一步加强满足损伤容限标准所需的维护和检查程序,联邦航空管理局于 1981 年发布了咨询通告 (AC) 91-56。该 AC 为飞机制造商和运营商提供了制定补充结构检查文件 (SSID) 的指南。SSID 提供了一种通过满足损伤容限要求来维持老式运输飞机持续适航性的计划。通过 SSID 计划,最初设计为故障安全型的飞机通过更新的检查程序基本上符合损伤容限理念。
损伤容限认为,尽管飞机可能存在亚临界裂纹和缺陷,但飞机仍能保持适航性。这一理念承认,不可能在整个飞机上建立完整的结构冗余。因此,损伤容限飞机的持续适航性在很大程度上取决于能够在裂纹和缺陷达到临界尺寸之前检测出它们的检查程序的实施。为了进一步加强满足损伤容限标准所需的维护和检查程序,联邦航空管理局于 1981 年发布了咨询通告 (AC) 91-56。该 AC 为飞机制造商和运营商提供了制定补充结构检查文件 (SSID) 的指南。SSID 提供了一种通过满足损伤容限要求来维持老式运输飞机持续适航性的计划。通过 SSID 计划,最初设计为故障安全型的飞机通过更新的检查程序基本上符合损伤容限理念。
损伤容限认为,尽管飞机可能存在亚临界裂纹和缺陷,但飞机仍能保持适航性。这一理念承认,不可能在整个飞机上建立完整的结构冗余。因此,损伤容限飞机的持续适航性在很大程度上取决于能够在裂纹和缺陷达到临界尺寸之前检测出它们的检查程序的实施。为了进一步加强满足损伤容限标准所需的维护和检查程序,联邦航空管理局于 1981 年发布了咨询通告 (AC) 91-56。该 AC 为飞机制造商和运营商提供了制定补充结构检查文件 (SSID) 的指南。SSID 提供了一种通过满足损伤容限要求来维持老式运输飞机持续适航性的计划。通过 SSID 计划,最初设计为故障安全型的飞机通过更新的检查程序基本上符合损伤容限理念。
AMC 23.573(a)(1)&(3) 结构的损伤容限和疲劳评估 – 复合材料机身结构 ...................................................................................................................................... 136 AMC 23.573(b) 结构的损伤容限和疲劳评估 – 金属机身结构 ............................................................................................................................................. 136
当今,我们大量的工程基础设施正在老化,包括飞机、地面车辆、船舶或建筑物。损坏是施加在这些工程结构上的载荷的结果,从设计角度来看,必须承受这种载荷。维护是由此产生的行动,结构老化越久,需要的维护和检查就越多。检查主要由人来完成,成本可能越高,需要的检查工作就越多。因此,检查过程的自动化成为一个值得考虑的问题,而结构健康监测和管理通常以 SHM 的缩写形式出现。SHM 是将传感和驱动集成到材料和结构中,这样无损检测 (NDT) 就成为其中不可或缺的一部分,检查主要是自动化的。这项活动与损伤容限设计原则密切相关,而损伤容限设计原则是航空轻量化设计的主要基础。然而,损伤容限设计也会对使用寿命延长产生重大影响,这是另一个维度,如果轻量化设计可能不是唯一的设计参数。本章将讨论加强检查和 SHM 的不同原因,以及一般进行结构设计所需的步骤。这些步骤确实包括载荷及其对疲劳和断裂的影响。这将
背景 - 行业现状 • 情况 - 复合材料传统上具有抗疲劳和腐蚀、减轻重量和其他飞机性能优势(航空外形、更大的切口) - 最近,制造成本节省、客户舒适度利益和损伤容限等额外优势正在推动更多应用 • 复合材料应用的扩展速度比
AH-64 Apache 数字孪生、美国陆军航空兵 B-1B Lancer 数字孪生、空军高速导弹应用新兴材料、国防部 F-16 数字孪生、美国空军 F-35 拆解、空军、海军、海军陆战队 FirePoint 联合研发项目:技术开发与转型、美国陆军 AMRDEC KC-135 结构拆解数据管理可视化、空军 M113 数字孪生、陆军 AMC MQ-9 收割者机身耐久性和损伤容限测试、空军 MQ-9 收割者机身静态测试、空军 MQ-4 Triton 机身耐久性和损伤容限测试、海军经济实惠、可持续复合材料建模 (MASC) 研究计划、空军研究实验室多所大学 / 机构研究伙伴关系,旨在开发技术以增强先进材料特性和结构认证,并借助高精度损伤建模和高效协议来证实先进复合结构 - AFRL、ONR、NAVAIR、DURIP、SBIR/STTR 国防原型中心 Skyborg 原型设计、实验和自主开发、空军 UH-60L 黑鹰数字孪生、陆军 AMC
复合材料航空航天结构在役检查指南 Jaap H. HEIDA、Derk J. PLATENKAMP 航空航天飞行器、国家航空航天实验室 NLR、荷兰马克内瑟,电话:+31 88 5114283,传真:+31 88 5114210;电子邮件:jaap.heida@nlr.nl 摘要 通过对有前景的移动无损检测 (NDI) 方法的评估结果,对复合材料航空航天结构的在役检查进行了综述。评估使用了代表主要复合材料航空航天结构的碳纤维增强样品,包括相关损伤类型,如冲击损伤、分层和脱粘。对一系列 NDI 方法进行了评估,例如目视检查、振动分析、相控阵超声波检查、剪切扫描和热成像检查。评估的重要方面包括缺陷检测和表征能力、设备的便携性、视野、耦合剂要求、检查速度、所需培训水平和设备成本。本文回顾了复合材料的损伤容限设计方法,并总结了复合材料航空航天结构的在役检查指南。关键词:航空航天、复合材料、无损、损伤容限、目视检查、振动分析、超声波、相控阵、剪切成像、热成像 1. 简介 由于复合材料部件在军用主飞机和直升机结构中的使用逐渐增加,因此