摘要:针对使用规范(或经典的)鉴别损失函数(例如原始GAN(Vanillagan)系统中的一个),引入了统一的α-聚化发生器损耗函数,该双目标生成对抗网络(GAN)。发电机损耗函数基于对称类概率估计类型函数Lα,所得的GAN系统称为Lα -GAN。在最佳歧视器下,表明发电机的优化问题包括最大程度地减少Jensen-fα-差异,这是Jensen-Shannon Divergence的自然概括,其中Fα是以损失函数Lα表示的coNVEX函数。还证明,该Lα -GAN问题在特殊情况下恢复了文献中的许多GAN问题,包括Vanillagan,最小二乘GAN(LSGAN),最小值k thorder gan(L k gan)和最近引入的(αd,αd,αd,αd,αd,αd,αd,αd = 1。最后,为三个数据集(MNAIST,CIFAR -10和堆叠MNIST)提供了实验结果,以说明Lα -GAN系统的各种示例的性能。
摘要:在海上研究以及搜索和救援操作中,建立或预测漂流物体的轨迹很重要。可以使用带有海洋动态模型的传统工具或通过人工智能模型来确定漂移对象的轨迹。从2003年12月19日至12月28日之间收集的漂流浮标数据中,研究小组采用了CNN(CORV1D)模型进行分析。分析结果表明,通过使用ADAM优化器,Huber损耗函数和256个过滤器,在隐藏层中,该模型性能的特征参数被确定为RMSE = 0.04004,MAE = 0.032304度,R²= 98%。使用SGD优化器和均方误差(MSE)损耗函数时,与先前情况相比,RMSE和MAE值最多降低了四倍,而R²值则在隐藏层中有64个过滤器达到99.9%。当隐藏层中的过滤器数增加到128时,CNN(CORV1D)模型的性能提高了20%,RMSE = 0.007863DEG,MAE = 0.006653DEG。使用CNN(Conv1D)模型使用SGD优化器预测漂移浮标的轨迹时,R²值和MSE损耗函数接近约100%,这表明该模型适用于预测漂流浮标轨迹的输入数据。将模型隐藏层中的过滤器数量从128增加到256并没有改变模型的预测性能,这表明该情况的最佳过滤器数为128。未来的工作应继续使用较大的输入数据集进行漂移数据分析。但是,这项研究中获得的RMSE结果仍然相对较大(0.87 km),这可能是由于输入数据有限。
方法:本文结合了不同领域的个体差异和群体共同点,并提出了一个多源信息共享网络(MISNET),以增强主题独立的EEG EEG情感识别模型的性能。通过采用循环迭代策略的两流训练结构来增强网络稳定性,以减轻使模型混淆的离群来源。此外,我们设计了两个辅助损失函数,以使域特异性和域共享特征的边际分布对齐,然后通过约束这些辅助损耗函数来约束梯度惩罚来优化收敛过程。此外,还提出了预训练策略,以确保共享编码器的初始映射包含有效的情感信息。
扩散模型是基于马尔可夫过程的生成模型家族。在其前进过程中,他们逐渐向数据添加噪声,直到变成完整的噪声为止。在向后过程中,数据逐渐从噪声中逐渐发出。在本教程论文中,充分说明了扩散概率模型(DDPM)。详细简化了其可能性的变异下限,分布的参数和扩散模型的损耗函数。引入了对原始DDPM的一些模型,包括非固定的协方差矩阵,减少梯度噪声,改善噪声时间表以及非标准高斯噪声分布和条件扩散模型。最后,解释了噪声表位于连续域中的随机差异方程(SDE)的连续噪声时间表。
在决策树合奏中提升倾向于提高准确性,而覆盖范围较小的风险很小。在Azure机器学习中,增强的决策树使用MART梯度增强算法的有效实现。梯度提升是用于回归问题的机器学习技术。它使用预定义的损耗函数以逐步构建每个回归树,以测量每个步骤中的错误并在下一个步骤中纠正它。因此,预测模型实际上是弱预测模型的集合。在回归问题中,以逐步的方式增强一系列树,然后使用任意可区分的损失函数选择最佳树[27]。像随机森林一样,它使用了许多较小,较弱的模型,并将它们融合到最终的总结预测中。但是,
摘要我们制定对量子问题的控制,以执行任意量子计算作为优化问题。然后,我们为其解决方案提供了一种示意图机器学习算法。想象一下一条长条“量子物质”,并具有某些假定的物理特性,并配备了定期间隔的电线以提供输入设置并阅读结果。在展示了如何将来自设置到结果的相应地图解释为量子电路之后,我们提供了一个机器学习框架,以“学习”在哪些设置上实现通用门集的成员。为此,我们设计了一个损失函数来衡量提出的编码未能实现给定电路的严重差异,并证明存在“层析上完整的”电路集:如果给定编码的编码最小化该集合的每个成员的损耗函数,它也将用于任意电路。最佳,任意量子门,因此可以使用这些东西实现任意量子程序。
1简介1 1。1问题配方2 1。2研究问题3 2相关工作5 2。1 ICD编码的先前方法5 2。 1。 1传统的机器学习方法5 2。 1。 2深度学习方法6 2。 1。 3个大语言模型(LLMS)6 2。 2利用ICD代码层次结构进行距离计算8 2。 3在模型训练中解决非差异损失功能9 2。 4不确定性10 3方法13 3。 这项工作中使用的1个LLM 13 3。 2数据集16 3。 3数据处理16 3。 3。 1临床笔记处理16 3。 3。 2 ICD- 10代码处理17 3。 3。 3数据拆分17 3。 4 T 5-基本编码的模型17 3。 5使用t 5中的任务前缀进行ICD编码18 3。 6将ICD-10代码层次结构纳入培训过程18 3。 6。 1定义基于距离的损耗函数18 3。 6。 2克服解码模型输出的挑战23 3。 7用于ICD编码的微调T 5 24 3。 8评估指标24 3。 8。 1总距离(TD)24 3。 8。 2 ICD第2章(IIC)25 3。 8。 3无关的ICD块(IIB)25 3。 8。 4无关的ICD第三级(IIT)25 3。 9模型不确定性估计25 3。 10实验设置27 4结果29 4。 1数据分析结果29 4。 2。1 ICD编码的先前方法5 2。1。1传统的机器学习方法5 2。1。2深度学习方法6 2。1。3个大语言模型(LLMS)6 2。2利用ICD代码层次结构进行距离计算8 2。3在模型训练中解决非差异损失功能9 2。4不确定性10 3方法13 3。这项工作中使用的1个LLM 13 3。2数据集16 3。3数据处理16 3。3。1临床笔记处理16 3。3。2 ICD- 10代码处理17 3。3。3数据拆分17 3。4 T 5-基本编码的模型17 3。 5使用t 5中的任务前缀进行ICD编码18 3。 6将ICD-10代码层次结构纳入培训过程18 3。 6。 1定义基于距离的损耗函数18 3。 6。 2克服解码模型输出的挑战23 3。 7用于ICD编码的微调T 5 24 3。 8评估指标24 3。 8。 1总距离(TD)24 3。 8。 2 ICD第2章(IIC)25 3。 8。 3无关的ICD块(IIB)25 3。 8。 4无关的ICD第三级(IIT)25 3。 9模型不确定性估计25 3。 10实验设置27 4结果29 4。 1数据分析结果29 4。 2。4 T 5-基本编码的模型17 3。5使用t 5中的任务前缀进行ICD编码18 3。6将ICD-10代码层次结构纳入培训过程18 3。6。1定义基于距离的损耗函数18 3。6。2克服解码模型输出的挑战23 3。7用于ICD编码的微调T 5 24 3。8评估指标24 3。8。1总距离(TD)24 3。8。2 ICD第2章(IIC)25 3。 8。 3无关的ICD块(IIB)25 3。 8。 4无关的ICD第三级(IIT)25 3。 9模型不确定性估计25 3。 10实验设置27 4结果29 4。 1数据分析结果29 4。 2。2 ICD第2章(IIC)25 3。8。3无关的ICD块(IIB)25 3。8。4无关的ICD第三级(IIT)25 3。9模型不确定性估计25 3。10实验设置27 4结果29 4。1数据分析结果29 4。2。2实验结果30 4。1 LLM和ICD编码的输入长度的比较31 4。2。2比较ICD编码的不同块策略32
构建准确的地图是构成可靠的局部设备,计划和导航的关键构建块。我们提出了一种新的方法,可以利用LiDAR扫描来建立动态环境的准确地图。为此,我们建议将4D场景编码为新的时空隐式神经图表示,通过将时间依赖性的截断符号距离函数拟合到每个点。使用我们的代表,我们通过过滤动态零件来提取静态图。我们的神经表示基于稀疏特征网格,一种全球共享的解码器和时间依赖性的BAIS函数,我们以无监督的方式共同优化。要从一系列li-dar扫描中学习此表示,我们设计了一个简单而有效的损耗函数,以分段方式监督地图优化。我们在包含静态图的重建质量和动态点云的分割的各种场景上评估了我们的方法1。实验结果表明,我们的方法是删除输入点云的动态部分的过程,同时重建准确而完整的3D地图,以超出几种最新方法。
构建准确的地图是构成可靠的局部设备,计划和导航的关键构建块。我们提出了一种新的方法,可以利用LiDAR扫描来建立动态环境的准确地图。为此,我们建议将4D场景编码为新的时空隐式神经图表示,通过将时间依赖性的截断符号距离函数拟合到每个点。使用我们的代表,我们通过填充动态零件来提取静态图。我们的神经表示基于稀疏特征网格,一种全球共享的解码器和时间依赖性的BAIS函数,我们以无监督的方式共同优化。要从一系列li-dar扫描学习此表示形式,我们设计了一个简单而有效的损耗函数,以分段方式监督地图优化。我们在包含静态图的重建质量和动态点云的分割的各种场景上评估了我们的方法1。实验结果表明,我们的方法是删除输入点云的动态部分的过程,同时重建准确而完整的3D地图,以超出几种最新方法。
决策感知模型学习的想法,该模型应该在决策重要的地方准确地是准确的,并且在基于模型的强化学习中获得了突出的重要性。虽然已经建立了有希望的理论结果,但缺乏利用决策损失的算法的经验性能,尤其是在连续控制问题中。在本文中,我们介绍了一项关于决策感知强化学习模型所需组件的研究,并展示了能够实现良好表现算法的设计选择。为此,我们对该领域的算法思想提供了理论和实证研究。我们强调,在Muzero的作品系列中建立的经验设计决策,最重要的是使用潜在模型,对于在相关算法中实现良好的性能至关重要。此外,我们表明Muzero损耗函数在随机环境中有偏见,并确定这种偏见具有实际后果。在这些发现的基础上,我们概述了哪些决策吸引的损失功能最好在经验方案中使用,从而为该领域的从业者提供了可行的见解。