经典物理学的常规相空间对空间和时间的处理方式有所不同,这种差异将导致现场理论和量子力学(QM)。在本文中,通过两个主要扩展可以增强相空间。首先,我们将Legendre转换的时间选择提升为动态变量。第二,我们将物质字段的泊松支架扩展到时空对称形式。随后的“时空空间”用于获得相对论场理论的汉密尔顿方程的明确协变版本。然后提出了形式主义的类似规范的量化,其中田地满足时空的换向关系,而叶面是量子。在这种方法中,经典的行动还促进了运营商,并通过其在物质 - 遗传分区中的不可分割性保留了明确的协方差。在新的非CASAL框架之间建立对应关系的问题(在不同时间是独立的字段)和传统的QM通过将空间类似相关器的概括性化为时空来解决。在这种概括中,哈密顿量被动作和常规颗粒取代,而被壳颗粒取代。量化叶面时,与页面和摇动机制相比,通过对叶状本征的条件来恢复上一个地图。我们还提供了对应关系的解释,其中给定理论的因果结构是从系统与环境之间的量子相关性出现的。这个想法适用于通用量子系统,并允许人们将密度矩阵推广到包含时空中相关器信息的操作员。
线性稳压器的基本结构、优点和缺点;基本 DC-DC 转换器(降压、升压、降压-升压)的稳态分析;衍生 DC-DC(Cuk、SEPIC、二次)转换器的稳态分析。变压器隔离 DC-DC 转换器(正向、反激、推挽、桥式)的稳态分析;开关模式稳压器规格、框图、建模方法、假设和近似值。CCM 和 DCM 模式下硬开关转换器的动态模型和传递函数。稳压器设计示例:电流编程转换器、框图、稳定性、建模和传递函数。单相 PFC 电路。谐振转换器,软开关原理:ZVS、ZCS、ZVZCS 谐振负载转换器:变频串联和并联谐振转换器(谐振开关转换器(准谐振):半波和全波操作和控制。谐振过渡相位调制转换器,降低 VA 额定值,固定频率操作以及设备和变压器非理想性的有利用途;软开关双向 DC-DC 转换器(双有源桥):在降压模式和升压模式下进行软开关,带或不带有源钳位 PWM 转换器(带辅助开关)、ZVT/ZCT PWM 转换器:带辅助开关的隔离和非隔离拓扑;辅助谐振换向极逆变器:用于逆变器的 ZVT 和 ZCT 概念;谐振直流链路逆变器:通过辅助开关强制振荡直流链路电压。先决条件:无
图1b显示了提出的三切口T型(3S-TT)桥腿,其开关节点SW 1可以与正,中或负轨道绑定,即中间或负轨,即𝑉in,p = in,p =𝑉in,n =𝑉n = in = in n = the,在相同的双极和/或三级输出电压能力中,与fb相同。与常规的TT桥腿[13],[14]不同,中点开关S F,1用标准的GAN晶体管实现,而不是通过两个这样的晶体管的抗序列连接或单一的双向交换机[15] - [17]。由于通常是非常低的直流电压,通常是p≤2v和/或𝑉in,n≤2v:1c,只要gan hemt的基本(功能)对称性可以支撑负耗压电压𝑉ds <0,只要栅极少量电压𝑉gd gd t - ds> - ds> ds> - (𝑉ds> ds> ds> ds> ds> ds> - 𝑉t-t- t- t- gs)。因此,可以使用负栅极源电压𝑉gs在一定程度上增加反向阻塞能力。1,2有利地,在任何给定时间,在载荷电流路径(即与负载串联)中只有一个开关,而不是在FB的情况下而不是两个开关。因此,考虑到每个位置的相同数量的晶体管,提出的3S-TT将传导损失减少至少两个。3图进一步注意到,在3S-TT中,从S HS,1到中点开关S F的换向,1涉及低侧开关的反行二极管,如缩放波形所示。即,2进一步显示了FB的关键波形和提议的3S-TT相模块(即,在以下内容中考虑了𝑁pH = 1),在下面考虑了相同的输出电压以及(总数)串联电感器和输出滤波器套管器的相同需求和应力(请注意3S-TT的设备开关频率是3S-TT的设备开关频率是FB,但)。
摘要 本文研究了商用平面和沟槽 1.2 kV 4H-SiC MOFSET 在重复非钳位电感开关 (UIS) 和短路 (SC) 应力下的可靠性。观察到器件特性的退化,包括传输特性、漏极漏电流 Idss 和输出特性。对 400 和 600 V 总线电压进行重复 SC 应力。应力期间总线电压的增加对测试器件的电气性能有更大的影响。在老化实验期间可能会发生热载流子注入和进入沟道区域栅极氧化物的捕获,这被认为是导致电气参数变化的原因。 关键词:可靠性、退化、SiC MOSFET、TrenchMOSFET、重复 UIS、重复短路 介绍 近年来,碳化硅 (SiC) 功率 MOSFET 制造技术已经相当成熟,因此,现在可以从不同的制造商处大量购买 [1]。由于其优异的性能,SiC 器件可用于更高温度、更高开关频率和更高功率密度的应用 [2-3]。尽管如此,在它们完全取代硅 (Si) 器件之前,稳健性和可靠性仍然是这些器件在过流、过温、短路和非箝位电感开关 (UIS) [5] 等多种极端工作条件下的主要问题 [3-4]。随着为降低成本而缩小芯片尺寸的趋势,雪崩稳健性和短路承受能力变得更加关键,因为它们对芯片尺寸设计非常敏感,因为芯片的最大能量密度是固定的。在 UIS 测试中,MOSFET 通常连接到没有反向并联续流二极管的电感,以在关闭器件时换向环路电流。因此,器件必须在工作阶段吸收先前存储在电感中的所有能量。因此,只要存储的能量足够高,MOSFET 就会进入雪崩模式,导致器件结温逐渐升高 [6]。在大电流雪崩操作期间,会产生高浓度的热载流子,这可能会导致界面和绝缘 (氧化物) 层的退化。
在1927年索尔维会议之后,将近一个世纪,量子力学的最终本体论问题仍然没有解决。本质上,量子理论的所有公式都取决于波函数或状态向量的使用(或数学上等效的结构)。,但研究人员不同意国家向量是否是现实的完整而准确的表示,它是否代表了现实的一部分,但需要通过其他变量来增强现实的一部分才能完成,还是它是一种认知的工具,而不是完全代表现实的工具。,他们进一步不同意国家向量是否应该被认为是某种抽象的希尔伯特空间的要素,或者是否应以更直接的物理方式(例如,在诚实的三维“空间”中)对矢量的特定代表或该矢量的特定表示,是否存在某种基本的本体论状态。在这里,我想主张这些替代方案中极端立场的合理性,世界上的基本本体论完全由抽象的希尔伯特(Hilbert Space)中的向量代表,并根据统一的schr'odinger Dynamics及时演变。从颗粒和田地到空间本身的其他所有内容都被正确地认为是从那种严峻的成分组中出现的。这种方法被称为“疯狂的埃弗里特主义”(Carroll&Singh,2019年),尽管“希尔伯特太空原教旨主义”同样准确。让我们看看一个人最终会如何被一种意识形态所吸引,这种意识形态与我们对世界的直接经验完全不同。然后,我们认为波函数会根据当我们首先教授量子力学时,我们会向我们展示如何通过采用经典模型并量化它们来构建量子理论。想象我们在某个相空间上定义了一个经典的前体理论,在数学上以符号歧管γ表示,其进化由某些哈密顿函数H:γ→r确定。我们在相空间上选择一个“极化”,这等于根据规范坐标Q(定义“配置空间”)和相应的规范矩p对其进行协调,每个符号可能代表多个维度。这是一个相当通用的设置;对于在d维欧几里得空间中移动的n点粒子,配置空间与r dn是同构的,但是我们也可以考虑范围的理论,对此,坐标仅仅是整个空间中域的值。构造相应量子理论的一种方法是引入单独坐标的复杂值波函数ψ(q)∈C。波函数必须是可正常的,从某种意义上说,它们是正方形的,rψ∗ψdq <∞,其中ψ∗是ψ的复杂偶联物。现在,动量由线性算子ˆ P表示,其形式可以从规范的换向关系[ˆ q,ˆ p] = iℏ(其中操作符Q仅通过Q乘法)。这使我们能够将经典的哈密顿量提升为一个自动接合操作员ˆ H(ˆ q,ˆ p)(超过潜在的操作员订购的歧义)。
部分 - I:基础研究方法I.数学方法特殊功能(Hermite,Bessel,Laguerre和Legendre功能)。傅立叶系列,傅立叶和拉普拉斯变换。复杂分析,分析函数的要素; Taylor&Laurent系列;两极,残留和积分评估。II。 经典力学中心力动作。 两次身体碰撞 - 散射在实验室和质量框架中心。 僵硬的惯性张量的刚体动力学。 非惯性框架和伪构造。 最少动作的原则。 广义坐标。 约束,拉格朗日和哈密顿的形式主义以及运动方程。 保护法律和循环坐标。 泊松支架和规范转换。 周期性运动:小振荡,正常模式。 相对论的特殊理论 - 洛伦兹转化,相对论运动学和质量 - 能量等效性。 iii。 电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。 磁静态学:生物 - 萨瓦特定律,安培定理。 电磁诱导。 麦克斯韦的方程式和线性各向同性介质中的方程;接口处的字段上的边界条件。 标量和矢量电势,量规不变性。 在自由空间中的电磁波。 电介质和导体。 反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。 iv。 穿过障碍物。II。经典力学中心力动作。两次身体碰撞 - 散射在实验室和质量框架中心。僵硬的惯性张量的刚体动力学。非惯性框架和伪构造。最少动作的原则。广义坐标。约束,拉格朗日和哈密顿的形式主义以及运动方程。保护法律和循环坐标。泊松支架和规范转换。周期性运动:小振荡,正常模式。相对论的特殊理论 - 洛伦兹转化,相对论运动学和质量 - 能量等效性。iii。电磁理论静电学:高斯定律及其应用,拉普拉斯和泊松方程,边界价值问题。磁静态学:生物 - 萨瓦特定律,安培定理。电磁诱导。麦克斯韦的方程式和线性各向同性介质中的方程;接口处的字段上的边界条件。标量和矢量电势,量规不变性。在自由空间中的电磁波。电介质和导体。反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射。iv。穿过障碍物。静态和均匀电磁场中带电颗粒的动力学。量子力学波颗粒偶性。schrödinger方程(时间依赖性和与时间无关)。特征值问题(盒子中的粒子,谐波振荡器等)。坐标和动量表示中的波函数。换向者和海森伯格的不确定性原则。dirac表示法。运动中心的运动:轨道角动量,角动量代数,自旋,添加角动量;氢原子。船尾 - 盖拉赫实验。
单元2:牛顿的古典力学法律;相空间动力学,稳定性分析;中央力量运动;两体碰撞,散射在实验室和质量框架中;刚体动力学,惯性张量的力矩,非惯性框架和伪型;变分原理,拉格朗日和哈密顿的形式主义和运动方程;泊松支架和规范转换;对称,不变性和保护法,环状坐标;周期性运动,小振荡和正常模式;相对论,洛伦兹转化,相对论运动学和质量能量等效的特殊理论。单元3:电磁理论静电:高斯定律及其应用;拉普拉斯和泊松方程,边界价值问题;磁静态:生物武器定律,安培定理,电磁诱导;麦克斯韦(Maxwell)的方程式和线性各向同性介质中的方程式;界面的字段上的边界条件;标量和矢量电势;仪表不变性;自由空间,介电和导体中的电磁波;反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射;等离子体的分散关系; Maxwell方程的Loentz不变性;传输线和波导指南;带电颗粒在静态和均匀电磁场中的动力学;移动电荷,偶极子和智障电位的辐射。单元4:量子力学波粒对偶性;坐标和动量表示中的波函数;换向者和海森堡的不确定性原则;矩阵表示;狄拉克的胸罩和样式法; Schroedinger方程(时间依赖性和时间无关);特征值问题,例如粒子中的盒子,谐波振荡器等。;穿过障碍;运动中心的运动;轨道角动量,角动量代数,自旋;添加角动量;氢原子,自旋 - 轨道耦合,精细结构;时间独立的扰动理论和应用;变分方法; WKB近似;时间依赖的扰动理论和费米的黄金法则;选择规则;半古典辐射理论;散射,相移,部分波,天生近似的基本理论;相同的粒子,保利的排除原理,自旋统计量连接;相对论量子力学:klein gordon和dirac方程。单元5:热力学及其后果的热力学和统计物理定律;热力学潜力,麦克斯韦关系;化学潜力,平衡;相空间,微染色;微型典型,规范和宏大的合奏和分区功能;自由能和热力学量的连接;一阶相变;经典和量子统计,理想的费米和玻色气体;详细的平衡原则;黑体辐射和普朗克的分销法; Bose-Einstein凝结;随机步行和布朗运动;介绍非平衡过程;扩散方程。单元6:电子设备半导体设备物理,包括二极管,连接,晶体管,现场效应设备,HOMO和HETEROJUNTICT设备,设备结构,设备特性,频率依赖性和应用;光电设备,包括太阳能电池,光电探测器和LED;高频设备,包括
单元2:牛顿的古典力学法律;相空间动力学,稳定性分析;中央力量运动;两体碰撞,散射在实验室和质量框架中;刚体动力学,惯性张量的力矩,非惯性框架和伪型;变分原理,拉格朗日和哈密顿的形式主义和运动方程;泊松支架和规范转换;对称,不变性和保护法,环状坐标;周期性运动,小振荡和正常模式;相对论,洛伦兹转化,相对论运动学和质量能量等效的特殊理论。单元3:电磁理论静电:高斯定律及其应用;拉普拉斯和泊松方程,边界价值问题;磁静态:生物武器定律,安培定理,电磁诱导;麦克斯韦(Maxwell)的方程式和线性各向同性介质中的方程式;界面的字段上的边界条件;标量和矢量电势;仪表不变性;自由空间,介电和导体中的电磁波;反射和折射,极化,菲涅尔定律,干扰,连贯性和衍射;等离子体的分散关系; Maxwell方程的Loentz不变性;传输线和波导指南;带电颗粒在静态和均匀电磁场中的动力学;移动电荷,偶极子和智障电位的辐射。单元4:量子力学波粒对偶性;坐标和动量表示中的波函数;换向者和海森堡的不确定性原则;矩阵表示;狄拉克的胸罩和样式法; Schroedinger方程(时间依赖性和时间无关);特征值问题,例如粒子中的盒子,谐波振荡器等。;穿过障碍;运动中心的运动;轨道角动量,角动量代数,自旋;添加角动量;氢原子,自旋 - 轨道耦合,精细结构;时间独立的扰动理论和应用;变分方法; WKB近似;时间依赖的扰动理论和费米的黄金法则;选择规则;半古典辐射理论;散射,相移,部分波,天生近似的基本理论;相同的粒子,保利的排除原理,自旋统计量连接;相对论量子力学:klein gordon和dirac方程。单元5:热力学及其后果的热力学和统计物理定律;热力学潜力,麦克斯韦关系;化学潜力,平衡;相空间,微染色;微型典型,规范和宏大的合奏和分区功能;自由能和热力学量的连接;一阶和二阶过渡;经典和量子统计,理想的费米和玻色气体;详细的平衡原则;黑体辐射和普朗克的分销法; Bose-Einstein凝结;随机步行和布朗运动;介绍非平衡过程;扩散方程。单元6:电子设备半导体设备物理,包括二极管,连接,晶体管,现场效应设备,HOMO和HETEROJUNTICT设备,设备结构,设备特性,频率依赖性和应用;光电设备,包括太阳能电池,光电探测器和LED;高频设备,包括