摘要:力量训练 (ST) 可诱导皮质肌肉适应,从而增强力量。ST 会改变主动肌和拮抗肌的激活,从而改变运动控制,即力量产生的稳定性和准确性。本研究通过量化皮质肌肉一致性 (CMC) 以及力量产生的绝对误差 (AE) 和可变误差 (VE),评估了皮质肌肉通讯和运动控制的变化,该干预为期 3 周,专门用于加强踝关节跖屈 (PF)。在训练前、训练开始后 1 周和训练后进行了脑电图、肌电图和扭矩记录评估。通过最大自主等长收缩 (MVIC)、亚最大扭矩产生、AE 和 VE、肌肉激活和亚最大收缩期间的 CMC 变化来评估训练效果,收缩量为初始和每日 MVIC 的 20%。 MVIC 在整个训练过程中显著增加。对于亚最大收缩,仅在初始扭矩水平下,主动肌激活度随时间降低,而拮抗肌激活度、AE 和 VE 在每个扭矩水平下随时间降低。CMC 不受 MST 的影响。我们的结果表明,神经生理适应在训练后 1 周内就很明显。然而,CMC 不受 MST 的影响,这表明中枢运动适应可能需要更长时间才能转化为 CMC 改变。
滑动检测是要识别抓握过程中对象是否保持稳定,这可以显着增强操纵灵量。在这项研究中,我们探索了能够执行各种掌握类型的五指机器人手的滑移检测,并在整个五个手指上检测到滑移,而不是专注于单个指尖。首先,我们构建了一个在六种抓地力类型的日常生活中收集的数据集,其中包括200 k个数据点。第二,根据深重下降的原理,我们为不同的抓握类型(USDConvnet-dg)设计了一个轻巧的通用滑动检测网络,以对掌握状态进行分类(无触摸,打滑和稳定的抓紧)。通过将频率与时域特征相结合,该网络的计算时间仅为1.26 ms,平均精度在验证和测试数据集上的平均精度超过97%,表明了强大的概括功能。此外,我们在现实世界中的实时掌握力调整中验证了提出的USDConvnet-DG,表明它可以有效地提高机器人操作的稳定性和可靠性。
摘要人类与空间的相互作用大大增加。随着术外活动(EVA)的不断增长的作用,宇航员手套在太空套装中需要技术研究和创新。手套似乎对设计显得微不足道,但实际上是最乏味的,因为EVA期间的所有任务都需要大量的手法。空间手套应具有敏捷性,可操作性和触觉的力量和功能。其主要目标是允许宇航员尽可能有效地移动手指,并有助于运动,约束和物体处理。由于指关节或掌pophangeal(MCP)关节的高扭矩要求,目前的手套很麻烦。此外,由于指尖持续压力,宇航员遭受了一种称为指甲分层(或on八溶解)状况的状况。重点是给定技术和科学增强功能的主要挑战,以及如何利用它们来汲取所有好处。本文提供了一项综述研究,以通过逐步而实质性的技术进步来确定项目的合理性。关键字EVA手套,太空服,对手动疲劳的影响,材料,机器人手
摘要 我们的目的是确定人工智能 (AI) 辅助无标记运动捕捉软件是否有用在临床医学和康复领域。目前,尚不清楚人工智能辅助无标记方法是否可以应用于下肢功能障碍的个体,例如使用踝足矫形器或拐杖的人。然而,由于许多下肢瘫痪患者和足矫形器使用者在站立期失去跖趾 (MP) 关节屈曲,因此有必要估计固定 MP 关节运动下足部识别的准确性。使用 OpenPose(一种无标记方法)和传统的被动标记运动捕捉方法确定跑步机行走过程中的髋关节、膝关节和踝关节角度;并比较了两种方法的结果。我们还研究了踝足矫形器和拐杖是否会影响 OpenPose 的识别能力。通过被动标记法 (MAC3D)、OpenPose 和使用 Kinovea 软件的手动视频分析获得的髋关节和膝关节数据显示出显著的相关性。与 OpenPose 和 Kinovea 获得的踝关节数据(相关性强)相比,MAC3D 获得的踝关节数据相关性较弱。OpenPose 可以充分替代传统的被动标记运动捕捉,适用于正常步态和使用矫形器或拐杖的异常步态。此外,OpenPose 适用于 MP 关节运动受损的患者。使用 OpenPose 可以降低传统被动标记运动捕捉的复杂性和成本,而不会影响识别准确性。
摘要:室内植物的栽培已成为全球研究人员关注的话题,因为它具有改善室内空气质量(IAQ)的潜力。然而,需要研究每种植物的环境因素适应性以与原生环境相对应。本研究调查了所选植物在室内生存的能力。在进行实验之前,所有选定的植物都与室内环境同化了两个月。本实验中的光合作用过程将作为确定每种植物的比较的指导。使用便携式光合作用系统设备(LI-COR 6400)确定每种植物的光合作用率水平。因此,在所有测试的植物中,蜘蛛植物在室内环境中生长的效果较差,光合作用率值高达 -0.15。此外,吊兰的光补偿点(LCP)也表明其光强度消耗为 2960 勒克斯,远高于 300 勒克斯。综上所述,本研究中只有红掌、哑藤、黄金葛、卡达卡蕨、祈祷植物和合果芋六种植物能够在室内环境中生存。在下一阶段的研究中,这六种植物可能会对改善室内空气质量产生良好的效果。
功能性磁共振成像(fMRI)通常太限制或侵入性,以至于与婴儿和幼儿一起使用。fnirs也易于使用,并且相对耐受运动。因此,它是发展种群的特别合适的方法论选择。尽管有这些优势,但婴儿和幼儿都在挑战研究参与者,他们的注意力范围很短,不了解和/或一定遵守说明,不要轻易保持静止或不愿意接受FNIRS上限。在两十年半的时间里,自从它首次与婴儿,FNIRS技术,实验方法和数据分析技术使用以来,技术已经发展了2 - 4,以满足发育神经影像的特殊需求和挑战。因此,发展性FNIRS研究正在成倍增长5(图1)。的确,自2010年以来,增长一直特别快,可能与增强发展社区的FNIRS专业知识以及在更易于使用的价格范围内出现更多的市售系统。相对于fMRI和电掌位图(EEG),自2017年以来,新婴儿发育出版物的分布(具有0-2岁)的分布表明,FNIRS的增加表明,婴儿研究方法选择的潜在变化。6
是通过触摸感,我们处理环境的触觉信息。触摸消息是处理触觉信息所需的信息属性“链”中的第一个链接。触觉处理系统反映了触觉感觉,触觉感知和触觉认知方面的连续性。这种方法的基本假设是将人脑视为通过触觉方式来注册,编码商店和操纵各种符号表示的信息处理器。人类信息处理系统中触觉表示的属性由以下内容组成:(1)低级触觉感觉处理,包括对身体表面上的感觉,身体感知的感觉,机身运动和平衡的掌感感应,以及那些检测到振动和空间探索的动力,(2)触觉的动力,(2)手机功能(2)其中包括歧视物体的触觉特征(纹理,物质,大小或形状),触觉空间感知,触觉零件零件关系和触觉图形感知以及(4)涉及触觉的高级触觉认知处理,涉及触觉短期,触觉短期记忆,触觉短期记忆,触觉工作记忆,触觉记忆,触觉学习,触觉,触觉,触觉,触觉,触觉,触觉,触觉,触觉。
增加感染耐药生物的风险。医院获得的感染是一种新的感染,在住院至少48小时后发展,没有证据表明该感染在入院时出现或孵化。还应在具有广泛医疗保健接触的人中考虑与医疗保健相关的感染,例如:在疗养院或其他长期护理机构,在前90天内在急性护理医院住院或住院治疗,或在前30天内出席医院或血液疾病诊所。在开始抗生素之前,在所有情况下,必须获得用于培养和灵敏度测试的标本。经验疗法的建议仅是由于设施和随着时间的推移之间的抵抗模式的异质性而导致的粗略指南。与区域微生物学家的紧密联络以及基于局部抵抗模式的医院抗生素政策的定期审查至关重要。9.1.1,血管内导管感染L53.9/T80.2 +(B95.8/Y84.8/B37.8)外周线感染:共同有机体:»凝结酶阴性的石掌cocci,尤其是S. Epidermis。»导管插入部位的小型局部红斑区域通常会在去除导管后而无需抗生素治疗。医学治疗患者具有较大的红斑和压痛区域的患者,超出了插入部位,这些患者在系统上很好:
新颖的肌肉交流pa7erns的用户是运动技能学习的关键方面,例如,当初学者音乐家学习新吉他或钢琴和弦时,可以看到。要研究此过程,在这里,我们引入了一种新的范式,该范式需要快速,同步的频率和延伸。首先,par-Cipant prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-prac-ins-intric figer flim孔和掌pophopophangect围绕的延伸(即和弦)。我们发现,有些和弦极具挑战性,但是Par-Cipant最终可以通过Prac-Ce来实现它们,这表明,肌腱和韧带间造成的硬性困难并没有反映强力的生物力学约束。在第二个实验中,我们发现和弦学习在很大程度上是特定的,并且没有推广到未经训练的和弦。最后,我们探索了哪些因素使一些和弦比其他和弦更加困难。di coulty是由该和弦所要求的肌肉交流pa7ern很好地预测的。与ngly相互困难,与相似的和弦与日常手用所需的肌肉交流pa7ern相似,以及与肌肉交流的整体大小相关。一起,我们的结果表明,这项工作中引入的新范式可能会提供一个有价值的工具来研究人类运动系统中新型肌肉助理Pa7erns的易用性神经过程。
内质网(ER)是一个巨大的,连续的膜网络(图1)在具有许多重要功能的细胞内。虽然核糖体在蛋白质合成中的作用而闻名,但肾小管或“光滑” ER(Ser,没有核糖)在很大程度上致力于生物合成和脂质和钙的代谢(CA2 +)掌位的生物合成和代谢。这些脂质,蛋白质和离子必须在正确的时间分布在其他膜上,以允许其他细胞器的正确功能,并且对于细胞信号传导至关重要。脂质转运是由Secretory途径(例如囊泡和管状载体)以及在ER和其他膜细胞器之间形成的所谓膜接触位点(MCS)介导的。MCS由两个相反的膜组成,它们通过狭窄的间隙进行通信,通常在10至30 nm之内(Wong and Others 2019),并依赖于蛋白质蛋白质和蛋白质脂质相互作用。MCS可以组成构成,也可以根据信号事件或膜组成改变而动态形成。在MCS,束缚因子,脂质转移蛋白,酶和离子通道协同作用,以促进离子,脂质和其他小分子的局部流动。是
