简介 太阳提供的能源是地球上生命的基础,也是人类文明的基础。人类在采用火、化学燃烧和随时随地可创造的能源时,增加了营养能源。在工业时代,煤炭、天然气和石油等化石化学能源被添加到能源选项中,大大提高了人类的能力和影响力 [参考文献 1]。不幸的是,其中一个影响就是气候变化。最近,核能被添加到能源结构中,为美国提供了约 20% 的电网发电量 能源占 GDP 的很大一部分,是现有和预计能力设计的关键决定因素,例如农业、住房、制造业、交通运输、航天、计量经济学和国家安全。人们已经付出了广泛的努力来构思、发现和开发替代/改进的能源和利用方法。气候变化以及所有应用都需要转向可再生能源而不再使用化石燃料,这大大加速了这些努力 [参考文献 2]。在过去十年中,经济上可行的可再生能源的发展取得了非凡的成功。可再生能源的成本仍在迅速下降,目前低于化石燃料的成本,而且其效率仍在提高 [参考文献 3]。此外,随着太空探索、国家安全空间和商业深空的快速发展,考虑到重量的重要性,迫切需要从主要依赖化学能量转向其他能量密度更高的能源。然后是基于热力学第二定律的长期地球变暖问题,该定律考虑了从人类能量中排出的废热量,这些废热量必须辐射到太空才能保持温度稳定。除了自然能源之外的能源(几乎所有的自然能源最终都归因于太阳能),包括深层地热、核能、
Moxidectin已获得美国食品药品监督管理局(US FDA)的批准,用于治疗12岁及12岁以上的患者,由于OnChocerca volvulus而导致的chocerceriasis(河盲)。在choceriasis-流行区域,具有伊维菌素的大众药物管理(MDA)计划,有或没有载体控制,旨在控制疾病,降低发病率,中断传播以及最近的消除。莫氧蛋白有可能在MDA程序中使用。在流行性尾cer虫的国家中,婴儿经常被母乳喂养至2岁,这表明在此类定期MDA计划中,有些妇女可能会乳酸。使用非分类分析和基于人群的药代动力学(POPPK)建模以及基于生理的药代动力学建模(PBPK)对非临床和临床数据进行定量分析,以确定在母乳和随后的expo-sures中排出的莫Xidectin量。分析结果相似。母乳中的莫昔丁蛋白的浓度遵循与血浆中的浓度相似的模式,在给药后大约4小时发生了最大浓度,随后母乳和血浆均快速下降。最早在给药两天后,母乳中的莫克西二糖素浓度低于欧洲药品局(EMA)和FDA可接受的每日摄入水平的阈值,用于从兽医使用中进行的二次暴露,以及WHO推荐的相对婴儿剂量(RID)安全性阈值。进行分析是为了支持开处方者和政策制定者在泌乳中的剂量建议。
摘要尽管最近出现了免疫检查点抑制剂,但转移性NSCLC患者的临床结果仍然很差,指出未满足的需要开发新的疗法以增强NSCLC中的抗肿瘤免疫反应。在这方面,已经报道了包括NSCLC在内的许多癌症类型的免疫检查点CD70的异常表达。在这项研究中,基于抗体的抗CD70(ACD70)治疗的细胞毒性和免疫刺激潜力被探索为单一药物,并与NSCLC在体外和体内结合NSCLC结合使用。抗CD70治疗导致NK介导的NSCLC细胞杀死,并在体外通过NK细胞增加了促炎性细胞因子的产生。化学疗法和抗CD70治疗的结合进一步增强了NSCLC细胞的杀戮。此外,与刘易斯肺癌含有的小鼠相比,与单个药物相比,化学免疫疗法的顺序治疗可显着提高存活率和延迟的肿瘤生长。治疗后这些肿瘤轴承小鼠中肿瘤排出的淋巴结中的树突状细胞数量增加,进一步强调了化学治疗方案的免疫原性潜力。顺序组合疗法导致T和NK细胞的肿瘤内浸润增强,以及CD8+ T细胞与Treg的比率增加。在含有NCI-H1975的人源化IL15-NSG-CD34+小鼠模型中进一步证实了顺序组合疗法对生存的优势作用。这些新的临床前数据证明了将化学疗法和ACD70治疗结合起来的潜力,以增强NSCLC患者的抗肿瘤免疫反应。
基线排放在实施还原策略之前测量的碳排放水平。它是未来测量的参考点。碳足迹是通过人类活动直接或间接发射的温室气体总量,通常以二二二氧化碳等效物(TCO2E)测量。碳通过投资于从大气中删除或减少同等数量的温室气体的项目来抵消弥补排放的行为。降低碳减少计划或旨在减少温室气体排放的项目或行动。下游运输和分配货物从制造地点运输到最终消费者所产生的排放。排放气体的释放,包括二氧化碳等温室气体进入大气。生命终止处理一旦产品不再有用或功能,最终处置或回收。GHG协议一种广泛使用的国际会计工具,用于理解,量化和管理温室气体排放。净净零,从大气中排出的温室气体量与从大气中取出的量之间的余额,旨在零净排放。范围1从拥有或受控来源(例如公司车辆或工厂)的排放直接排放。范围2从公司消耗的电力,蒸汽,供暖和冷却产生的产生的间接排放。范围3排放公司在公司价值链中发生的所有其他间接排放,包括上游和下游排放。SECR要求简化了能源和碳报告要求,这是一套有关能源使用和排放的公司报告指南。可持续的采购采购实践,这些实践考虑了环境,社会和道德因素。TCO2E吨二氧化碳等效量,这是测量碳足迹的标准单元。上游运输和分配由原材料和商品从供应商到制造地点产生的排放。
1.1从Solent流域排出的高水平的氮被认为是导致绿藻过度生长(一种称为富营养化的过程),该藻类对该地区的国际保护栖息地产生了公认的,有害的影响。1.2随着欧洲判例法的变化,自然英格兰(政府的自然环境顾问)建议地方规划机构(LPA),所有涉及或产生额外夜间过夜的新开发项目都应是“养分中性”,因为一种方法是确保开发不会增加现有的营养费。必须适当解决新开发项目对水质产生的其他废水的影响,以便为了评估适当的建议1,以结论对栖息地站点没有不利影响(以及理事会在法律上符合法律规定的决定)。1.3缓解措施成为“营养中性” 2的额外住宅(包括住宅的强化),与旅游业相关的发展以及由于产生额外的废水所产生过夜的任何其他发展所必需的。1.4朴茨茅斯市议会(PCC)批准了新住宅的首个临时营养中性缓解策略,以应对2019年11月缓解需求。迄今为止的战略重点是从水效率提升到理事会的住房库存的“缓解信用”,以确保该市的氮产量净增加。也有通过这种“照常”生成的缓解来源仅设想能够在有限的时间内(可能是2 - 3年)提供“信用额”,但要监视开发行业对水效率提升的工作以及对累积的“信用银行”的需求。,随着理事会的升级计划的持续,该来源的预计能力正在减少,尽管Covid-19-19大流行限制降低了实际节省水量,但仅将工作限制为基本工作。1.5汉普郡和怀特野生动物信托(Hiowwt)的汉普郡和岛已开发了一种“基于自然的解决方案”,以提供缓解氮的方法。该计划是通过收购目前将高水平的养分(氮)释放到solent中并改变其管理方式的大量管理的农田(即放牧较少或留给“重野”,以产生较低的氮输出;然后,可以使用氮输出的差异来抵消新开发的影响。
抽象的背景肿瘤靶向疗法会引起令人印象深刻的肿瘤消退,但耐药的出现限制了患者的长期生存益处。几乎没有有关髓样细胞网络的作用,尤其是在肿瘤靶向治疗过程中的树突状细胞(DC)的信息。方法,我们研究了肿瘤微环境(TME)(TME)和DYMM.3A临床瘤小鼠模型中的治疗介导的免疫学变化(TME)和淋巴结淋巴结(LN)(LN)(使用V-Raf Merine sarcoma sarcomAcomAcomAcomAcomAma viral Oncogene vyry b(braf)v600e v600e vyror intertortiation from-dimantiation frout in Cymantion v600e v600e vyror intertination cy in多重免疫组织化学。这与RNA测序和细胞因子定量相辅相成,以表征肿瘤的免疫状态。通过在肿瘤小鼠中耗尽CD4 +或CD8 + T细胞来研究T细胞在肿瘤靶向治疗过程中的重要性。肿瘤抗原特异性T细胞反应的特征是在体内T细胞增殖测定中进行,并使用缺乏CDC1的BATF3 - / - 小鼠评估常规1型DC(CDC1)对肿瘤靶向治疗期间T细胞免疫的贡献。结果我们的发现表明,BRAF抑制剂治疗增加了肿瘤免疫原性,这反映了与免疫激活相关的基因上调。T细胞增添的TME包含更高数量的活化的CDC1和CDC2,还包含表达CCR2的单核细胞。同时,靶向肿瘤的治疗增强了肿瘤排出的LN迁移,活化的DC亚群的频率。更重要的是,我们在肿瘤和LN中确定了表达FC伽马受体I(FCγRI)/CD64的CDC2群体,该群体显示出高水平的CD40和CCR7,表明参与T细胞介导的肿瘤免疫。仅在CDC1缺陷小鼠模型中仅部分损失治疗反应而强调了CDC2的重要性。CD4 +和CD8 + T细胞对于治疗反应都是必不可少的,因为它们各自的耗竭受损的治疗
摘要:通过开放式沟渠排出的废水对家庭和饮用水分配线构成了污染的威胁。这项研究评估了饮用水和废水的细菌和寄生虫负荷。总共从三个Addis Ketema和Akaki/Kaki/Kately子城市的三个Woredas中收集了205个饮用水和废水样品,并分析了肠道病原体的总生物嗜性菌细菌,肠内肠菌,肠结肠造物,总结肠菌群,以及原生动物和Helminth Parasity parasiqual and Parasiciqual和Parasiciqual and Parasiquiquic和Parasiquiquic and Parasiciqual and Parasiqual和Parasiquiqual。来自两个子城市的废水样品均具有有氧嗜嗜性细菌,肠杆菌和总大肠菌群的平均计数,高于log 6 cfu/ml(CV,<10%)。两个子城市中饮用水的肠杆菌和总大肠菌的数量超出了允许的水平(> log 2 CFU/ml)。饮用水中有氧嗜性细菌,肠杆菌和大肠菌群的平均计数(log cfu/ml)在p = 0.013(CI:-0.82722,0.27937)显示出显着差异; p <0.001(CI:-1.797,-3.358)和p <0.001(CI:-2.289,-0.759)分别在两个子城市之间。从表面废水样品中,只有总大肠菌数显示出显着差异,而p = 0.008(-1.149,0.003),但是,有氧细菌p = 0.764(-0.022,0.434)和0.115(-0.115(-0.115(-0.33)),有氧细菌P = 0.764(-0.022,0.434)的平均值无显着差异。没有遇到沙门氏菌或志贺氏菌。各种非乳糖发酵革兰氏阴性细菌,主要由proteus spp缩小。,铜绿假单胞菌和亚藻素粪便从两个亚城的废水中分离出来。废水中的原生动物和蠕虫寄生虫和饮用水样品主要由贾第鞭毛虫,Taenia spp和Ascaris lumbricoides主导。总而言之,研究子城市中的饮用水被各种机会病原体和疾病污染,导致寄生虫。因此,研究子城市中的家庭应在食用前治疗饮用水。负责当局应定期检查饮用水分配线的完整性。关键字/短语:Addis Ketema,Akaki/Kality,Addis Ababa,饮用水,废水,微生物
1. 背景 KenGen 是目前该国最大的发电机组,占该行业有效容量的 60%。KenGen 的装机容量由地热 (799 兆瓦)、水力 (825.7 兆瓦)、风能 (25.5 兆瓦) 和火力 (180 兆瓦) 组成。肯尼亚 2022-2041 年最低成本电力发展计划 (LCPDP) 报告预测,能源需求预计平均增长 5.22%,而峰值负荷预计平均增长 5.34%。能源部门有多个已承诺的发电项目正在实施中,由 KenGen 和独立电力生产商 (IPP) 开发。此外,肯尼亚还与邻国签订了电力交换双边协议。当前的电网正面临着近期未曾出现过的挑战。间歇性可再生能源尤其是风能和太阳能发电量显著增加。这对电网有利,因为可再生能源发电量增加,取代了中速柴油 (MSD) 电厂和燃气轮机 (GT) 发电量更昂贵的热电。然而,这种改进的可变可再生能源 (VRE) 容量也使电网面临一些关键挑战,因为在风能可用的非高峰时段,需求较低,而且它取代了其他形式的发电,特别是地热发电。在这些低峰时段,很难通过节流地热井来减少蒸汽发电,因此唯一可用的选择是排出多余的地热蒸汽。由于排出的蒸汽无法回收再注入资源区,情况变得更糟,因此降低了地热田的可持续性。另一个令人担忧的问题是电网的稳定性。间歇性电源往往不可预测,因此它们需要其他能够弥补资源间歇性的能源。这意味着,为了将可再生能源整合到网络中,网络中需要其他形式的能源发电或辅助服务来帮助提高电网的稳定性。根据 LCPDP 2024-2043 的建议,到 2026 年需要加快 250MW BESS 的开发。根据该报告,预计地热容量将在规划期内以年均 36% 的年均增长率对总公司容量贡献最高。电池储能系统和抽水蓄能将对电网稳定做出重大贡献,到 2043 年,这两种技术的总容量将占固定容量的 14%。值得注意的是,预计到 2035 年,所有柴油和燃气发电厂都将退役。按照政府到 2030 年实现 100% 绿色能源的目标,到计划期结束时,56% 的固定容量将是可再生能源,其中 VRE 技术将在 2043 年贡献 5%。根据这些建议和调查结果,值得注意的是,BESS 将在系统中发挥关键作用,无论是在能源转换方面,还是作为辅助服务提供商方面。
由于缺乏淡水供应以及大量的工业用品和污水流,水的污染水平增加了,这种困境已扩大到威胁人类和地球上的生命的主要关注点。人口增长,特别是在新兴国家,工业发展和经济增长中,需要使用安全可持续的技术来解决这一全球问题。工业水处理涉及提取污染物并从中提取净化水,这是许多部门所必需的和困难的程序,包括皮革,晒黑,染料,石化和药物[1]。这些流中的基本问题之一是将有害药物(PHC)引入生态系统,最终需要立即反应[2]。PHC通常由许多行业(包括医学,畜牧业,水产品和日常生活)生产。PHC由于缺乏将其排放到地表水体中排出的监管限制而成为近年来的重要主题。根据最近的研究,phcs的制造和管理在各州之间,整个时间之间,每年都可能有所不同。此外,随着世界人口的年龄和生活水平的提高,预计在未来几年中,它们的使用将增加[3]。根据各种研究[4 E 7],在地表水中鉴定了PHC,范围从Ng/L到M G/L,以及在Ng/L到MG/L的值中,在废水和地下水中鉴定了PHC [8,9]。有几种可靠的工业废水处理方法。由于它们的高化学稳定性,生物蓄积倾向,有限的生物降解能力和诱变效应,因此即使在极低的浓度下,PHC也对环境有害[10,11]。有机污染物最广泛使用的治疗技术包括膜技术,吸附,电化学,浮动,化学沉淀和离子交换。在这些技术中,基于压力驱动的膜分离被用于各种应用中作为两个部分之间的选择性屏障。膜在最近的研究中已广泛研究了药物的有效去除。与其他常规分离过程相比,它们提供了环境安全性,高分离效率,低能消耗,易于维护,不需要化学物质,出色的渗透质量以及适度的工作温度,使它们成为浪费水处理的绝佳选择,无论是单独或作为混合过程的一部分] [12 E 18]。尽管膜方法在废水处理中起着重要的作用,但犯规在某些应用中限制了它们的用法。结垢可降低整个膜的水转运,并恶化膜表面的其他功能性,从而增加能量征服并降低膜的寿命。另一个困难是渗透率和选择性之间的权衡。很难改善一个而不为当前使用的聚合膜牺牲另一个[16,18]。因此,要修改膜表面以提供所需的特定特征[19]。越来越多的注意力专门用于表面
癌症是全球最致命的疾病之一,其inci dence每年都在增加。在欧洲,这种疾病约有20%的总死亡人数,每年约300万例新病例和170万例死亡[46]。在葡萄牙,在2020年证实了60,467例新的癌症病例,结肠癌癌症是发病率最高的癌症,其次是乳腺癌和前列腺癌IARC [26]。为了治疗这种疾病,可以使用许多程序:手术,化学疗法,放射治疗,靶向治疗,免疫疗法,干细胞/骨髓移植和激素治疗。最好的治疗方法是根据癌症的类型/阶段和治疗的可用性选择。其中,化学疗法是第二次应用的治疗方法[1]。化学疗法包括使用药物杀死癌细胞。这些药物,称为细胞抑制剂,抗癌药或细胞毒素(解剖学治疗化学分类的L类,即可以以口服形式(大部分时间在家,经常去医院去医院)或静脉注射形式(通常在医院或医疗保健设施进行)[36]。尽管它们在癌症的治疗方面非常有效,但细胞抑制剂也会影响健康的组织,尤其是在快速复制的情况下,例如血细胞,皮肤细胞,胃细胞等。根据国际癌症研究机构[27],一些细胞抑制剂已经被确定为人类的致癌,例如依托泊苷,环磷酰胺,他莫昔芬,硫唑啉,硫硫氨酸,硫磺蛋白,布鲁芬和氯腹co。其他人,阿霉素,顺铂,达卡巴嗪和mitoxan trone已被归类为可能或可能对人类致癌。仍然,由于缺乏毒理学研究,大多数细胞抑制剂尚未分类。给药后,人体无法代谢所有药物,其中一部分是通过尿液和粪便排出的。因此,细胞抑制剂以及其他药物,细菌和病毒都经常从医院释放到水循环系统。在全球范围内,有一些医院已经拥有废水处理厂(WWTP),可在将废水排放到城市下水道中之前提供局部消除微污染物[31,41]。有时,这些治疗方法还不足以去除最顽固的药物,而大多数全球医院都没有用于废水的补救技术。The main objective of this study is to evaluate the presence of thir teen pharmaceuticals of concern (bicalutamide, capecitabine, cyclo phosphamide, cyproterone, doxorubicin, etoposide, flutamide, ifosfamide, megestrol, mycophenolate mofetil, mycophenolic acid, paclitaxel and prednisone) in Portuguese hospital在9个月的活动中,废水总共包括一百二十九个样本。固相提取(SPE)和液相色谱 - 串联质谱法(LC - MS/MS)分别用于提取和定量目标细胞抑制剂。直到au thors的知识,这是第一次在全世界的医院废水中监测氟丁酰胺,霉菌酸酯和霉酚酸。葡萄牙细胞抑制剂水平的数据很少,只有一项关于从北部城市WWTP的Portu Guese废水监测的研究的研究[24]。仍然,完全缺乏有关葡萄牙医院废水的细胞抑制剂发生的信息