披露:作者对于本研究没有任何需要披露的信息。简介:半月板对于膝关节的负荷分布、减震和稳定性至关重要。半月板损伤会导致疼痛、活动受限和易患骨关节炎。虽然传统治疗方法不能恢复半月板功能,但生物制造有望生成具有仿生血管化和非血管化区域的半月板结构 1 。然而,这种模拟通常是通过软水凝胶或厚的应力屏蔽纤维实现的。熔融电写 (MEW) 通常用于为具有 µ m 级纤维的水凝胶提供长期机械稳定性 2 。熔融电纤颤 (MF) 使用类似原理,但通过使用牺牲材料,可以实现纳米级纤维 3 。本研究旨在通过融合 MEW 和 MF 来制造区域性半月板结构。 MEW 提供直接的机械稳定性,而 MF 引导胶原蛋白排列以刺激结构 ECM 元素的沉积,从而实现长期的机械稳定性。方法:使用 MEW(聚己内酯 (PCL))和 MF(PCL/PVAc,比例 = 20:1(MEW:MF))打印菱形(15、30、60 °)和盒子状结构(300 x 300 µm)。通过乙醇/PBS 洗涤溶解 PVAc,并在支架上接种人源半月板祖细胞(hMPC,密度 = 5*10 6 细胞/毫升)。进行压缩和拉伸测试(动态机械分析仪,TA Q800)。用免疫荧光可视化细胞(Dapi、肌动蛋白)和 I 型胶原蛋白引导。为了将脉管系统纳入外部区域,将血管和血管周围细胞(HUVEC:2.5*10 6 细胞/ml 和 MSC:5*10 6 细胞/ml)接种到支架的外部区域。)通过免疫荧光(CD-31 和 a-SMA)研究血管网络的形成。结果部分:MF 纤维引导 MPC(肌动蛋白 +)和 I 型胶原蛋白沉积,而 MPC 聚集在 MEW 微纤维上,I 型胶原蛋白主要沉积在这些聚集体周围(图 1A)。此外,与 MEW PCL 支架或非增强凝胶相比,MF-MEW 的汇聚为半月板结构提供了更高的压缩 E 模量,尤其是随着时间的推移(图 1B)。评估血管分区显示所有结构的总血管长度保持不变,并且与非增强凝胶相比更大(图 1C)。讨论:本研究强调了 MEW 和 MF 融合以引导细胞和 ECM 引导的潜力。MEW/MF 胶原引导可能归因于随着时间的推移更好的基质弹性。此外,本研究展示了生物打印机械能力和半月板构造的第一步,其中包括仿生血管和无血管区。意义/临床意义:这些发现与生成高度多孔但机械稳定的半月板植入物有关,这些植入物可实现胶原对齐,从而实现潜在的长期稳定机械性能。此外,这些结构可用于包括半月板血管和非血管成分的体外研究,以进一步获得半月板再生的基础知识,最终改善患者护理。参考文献:
完整作者名单: 张一志;普渡大学,材料工程硕士 张迪;普渡大学,材料工程硕士;洛斯阿拉莫斯国家实验室,集成纳米技术中心 刘俊程;普渡大学 陆平;桑迪亚国家实验室, Deitz,Julia;桑迪亚国家实验室 沈嘉楠;普渡大学系统,材料工程硕士 何子豪;普渡大学 张星航;普渡大学系统,材料工程硕士 王海燕;普渡大学系统,材料工程硕士;尼尔·阿姆斯特朗工程大楼
随着设备加工精度的发展和半导体材料掺杂的均匀性,由于设备的生产过程,由铜所代表的金属互连设备的瓶颈变得越来越明显。金属的性能在微尺度上显着恶化,而碳纳米管组件结构在此规模上具有很大的优势。除了具有高于铜的高电导率外,CNT还具有出色的导热率,可以支持良好的热管理和热量耗散。CNT的另一个重要方面与其焊料的独特特征和高频工作能力有关。纳米焊接技术涉及局部加热CNT bers以产生交联的bers。1,2基于这项技术,可以通过CNTber构建各种结构,包括2D网络和3D笼子,并且可以生产可编程的电路。此外,CNT可以在40 GHz或更高频率的高频率下使用高性能,这代表了由于其性质而无法克服的金属的局限性。此外,散热已成为限制
在这方面,近几年来,人们对基于镧系元素的单分子磁体 (SMM) 进行了深入研究,旨在在分子水平上稳定磁矩并开发更高密度的存储应用。[5,12–19] 镧系元素的缓慢弛豫时间、高磁矩和双稳态基态使其非常适合分子自旋电子学应用。[5,12,13] 镧系元素驱动的 SMM 方法的合理延伸是设计包含镧系元素的周期性网络,这些网络可以充当活性磁信息单元。在过去的几十年里,金属超分子协议已经成为一种设计嵌入金属元素的功能性网状材料的有力策略。[20–22] 这种合成范式也在表面上得到了发展,能够设计二维金属有机设计,主要采用过渡金属和碱金属。[23–25]
10.1 70 米天线替换研究 ...................................................................... 284 10.1.1 延长现有 70 米天线的使用寿命 .............................................................. 285 10.1.2 设计新型 70 米单孔径天线 ...................................................................... 285 10.1.3 排列四个 34 米孔径天线 ............................................................. 286 10.1.4 排列小型天线 ...................................................................... 287 10.1.5 排列平板天线 ...................................................................... 288 10.1.6 实施一对球形高效反射元件天线概念 ............................................. 289
Enterprises 企業 In alphabetical order 按字母順序排列 Abacus Project Consultants Ltd. Acca Ltd. Actuant Global Sourcing Ltd. Adi Ltd. Adr Partnership Ltd. AECOM Asia Co Ltd. Aedas Ltd. AIA Group Ltd. Alliance Construction Materials Ltd. Aln Ltd. Arthur Yung & Associates Co Ltd. Arup Co Ltd. Asia卫星电信公司有限公司亚洲世界expo管理有限公司ATAL建筑服务工程有限公司Atelier Pacific Ltd. Atkins Atkins Atkins Atkins Beam Society Ltd. Belt Collins Ltd. Belt Collins International(HK)International(HK)Ltd. Black&Veatch Hong Hong Hong Hong Ltd.中国投资信息服务有限公司中国海外控股有限公司中国资源建筑有限公司中国国家建设(澳门)中国国家建筑工程(HK)有限公司Chinney Construction Co Ltd.
神经组织工程需要制造生物相容性支架,其化学和拓扑特性可以根据细胞功能和命运进行定制。[1–3] 具体来说,受生物启发的拓扑线索现已被广泛用作细胞指导材料,以调整细胞-材料界面处所需的细胞行为。[4–8] 其中,各向异性基质代表了一种有前途的工具,可用于开发适用于神经修复策略的支架。[9–14] 特别是,受细胞外环境中发现的纤维和原纤维的形状和几何形状的启发(例如,轴突束和延伸的神经突束),各向异性取向纤维成为决定神经突沿基质主轴排列和伸长以及促进神经元分化的理想候选者。[15–20]
6 产品索引包含所有活性物质,包括翻译、别名和强度、向 XEVMPD 报告的所有药品名称及其排列,以及拼写错误的术语与物质/产品名称之间的所有链接。附件 2 中描述了用于创建产品索引的产品名称和物质的排列。