● 类别 1 和 2 - 采购的商品和服务以及资本货物:罗氏于 2020 年开始量化范围 3 类别 1 和 2。该方法随着时间的推移不断完善,以提高排放因子的相关性和准确性。当前的计算方法使用混合模型,结合基于活动的数据(如果可用)和基于支出的排放因子。支出数据取自原始数据(罗氏 OPERA 系统),乘以排放因子,得出二氧化碳当量排放量。多区域排放因子模型已于 2024 年实施,以更准确地表示我们全球供应链 1 的影响以及对 2022 年和 2023 年的重述。该方法预计将随着时间的推移进一步完善,以利用供应商原始数据等。
本文档列出了组织的2023温室气体排放清单,以及根据GHG协议使用的方法,并应用了标题为“公司价值链(SCOPE 3),会计和报告标准”的文档中所述的原理,这是了解公司对公司对气候变化的全球影响的关键工具,以及潮流的影响以及趋势的趋势。在2022年,Caixabank S.A.对各种间接排放类别进行了重要研究,然后考虑到其组织的全球周围,而不是操作周围的范围(基于2022-2024减少计划中的目标),它用来实现了不同的范围,而不是目前的计算。可以在本文档的附录4中找到该全局周边的计算结果。
价格下降和屋顶系统更快的适应性推动了光伏预测的上升。由于成本较高和许可缓慢,中国以外的风能预测不太乐观。可再生能源的氢能产能增长仅占公布产能的 7%
摘要。甲烷排放的现场水平测量值由操作员与自下而上的散布清单进行对帐,以提高所报告排放的准确性,彻底和确定。在这种情况下,至关重要的是避免测量错误并了解测量不确定性。遥远的飞机系统(通常称为“无人机”)可以在现场级甲烷排放的量化中起关键作用。典型的实现使用“质量平衡方法”来量化排放,高精度甲烷传感器以垂直窗帘模式安装在四极管无人机上。然后可以根据测量的甲烷浓度数据和同时的风数据在事后计算总质量排放率。受控释放测试表明,使用质量平衡方法的错误可能是相当大的。例如,Liu等。(2024)报告了测试的两个无人机解决方案的绝对错误超过100%;另一方面,如果在数据上放置了其他约束,则误差可能会小得多,在Corbett和Smith(2022)中的根平方错误的顺序,将分析限制在风场稳定的情况下。在本文中,我们提出了对物理现象的系统误差分析,该分析影响了与甲烷浓度数据获取和后处理有关的参数质量平衡方法中的误差。这些来源的示例包括单独分析了词的来源,并且必须意识到,实践中可以积累单个错误,并且也可以由未包含在本工作中的其他来源增加它们。
在整个食品价值链中,从农场到零售,采购乳制品、牛肉和猪肉的公司面临着不同程度的甲烷相关气候风险,这取决于公司提供的产品。对于金融机构而言,了解哪些食品公司面临的甲烷暴露程度最高,对于管理气候风险至关重要。下一节将概述食品行业格局,揭示该行业中哪些子行业在其供应链中存在严重的牲畜甲烷暴露。(参见第10页的图表。)投资者和贷款机构可以利用这些洞察,更好地识别优先投资公司,并利用合作机会。包装食品和肉类包装食品和肉类公司面临的甲烷排放风险各不相同,具体取决于其生产产品的多样性。
•清洁空气法第112(i)(4)条规定,如果总统发现“实施此类标准的技术,并且符合美国国家安全利益,则美国总统可以授予对任何来源的合规义务2年的合规义务。”
几项研究使用统计和ML技术研究了CO2排放趋势。传统的时间序列模型,例如季节性自回归综合运动平均值(Sarima),已有效地分析历史排放模式。然而,机器学习模型(例如随机森林和梯度提升)通过合并多个变量(包括能源消耗,GDP和工业生产)来提供增强的预测精度。研究强调,基于AI的碳跟踪工具(例如CarbonTracker和Eco2AI)通过优化计算过程中的能源消耗来减少排放效果至关重要。
居住区的经典加热是非常有能源的,因此需要替代品,包括可再生能源和先进的供暖技术。因此,本文引入了一种新的方法,用于用于未来地区供暖计划的全面变体分析,旨在运行排放和成本。为此,一项广泛的基于模型的建模研究包括加热中心的模型,热网管道和建筑物的加热界面单元,并与共模拟结合在一起。这些能够对各种技术和能源载体的经济可行性和可持续性进行比较分析。新的模块化且高度可容纳的建筑模型可用于验证引入的热网格模型。结果表明,与常规天然气加热相比,生物甲烷作为一种能源可将碳当量排放量降低近70%,并且在配备加热泵时,将氢用作能源的排放量可将氢作为能源的排放量减少77%。此外,当考虑经济利益时,地面源热泵的使用具有很高的经济生存能力。研究结果强调了在地区发展的早期阶段,战略规划和灵活设计的重要性,以提高能源效率和减少的碳足迹。
摘要在ANTH或ANTH(Br)2的单个步骤反应中合成了一种新的深蓝色发射和高度荧光蒽(ANTH)衍生物,其中包含全氟苄基(Bn F)组,9,10- ANTH(Bn f)2,在ANTH或ANTH(Br)2的单个步骤反应中合成,使用bn f I,使用bn f I,通过bn f I,通过bn f使用高 - 较高的cu- pperem cu-/ na-a光化学反应。通过NMR光谱和单晶X射线衍射法阐明了其结构。后者揭示了相邻安斯核之间没有π -π相互作用。与ANTH和9,10-Antherivations相比,9,10-Anth(Bn F)2的高光致发光量子产率(PLQY)为0.85(BN F)2,其光稳定性显着提高,并且简单的合成访问使其成为一种有吸引力的材料,作为深蓝色的OLED发射异味和有效的荧光概率。