伴生气:从油井中产出的气体。 保存:回收伴生气,用作生产设施的燃料、其他有用用途(如发电)、出售或注入油气池。 紧急燃烧或排气:当设施内的安全控制措施启动,设备减压以避免爆炸、火灾或灾难性设备故障造成的人身伤害或财产损失时,就会发生紧急燃烧或排气。可能的原因包括压力安全阀超压和紧急关闭。 设备组件:与碳氢化合物接触并有可能排放无组织排放物的设备组件。 燃烧:在燃烧器或焚化炉中燃烧气体。 非伴生气:从气井中产出的气体。 非常规燃烧或排气:间歇性和不频繁的燃烧或排气。有两种类型:计划内燃烧和无计划内燃烧。计划燃烧或排气:操作员可以控制燃烧或排气的时间和持续时间,也可以控制释放速率。计划燃烧或排气是故意对加工设备或管道系统减压(吹扫)的结果。计划燃烧或排气可能发生在管道排污、设备减压、启动、设施检修和试井期间。计划外燃烧或排气:与保护设施完整性和保护安全密切相关的紧急或异常操作活动。操作员无法控制这些活动何时发生。有两种类型:异常燃烧或排气和紧急燃烧或排气:当一个或多个工艺参数超出允许的操作或设计极限,需要燃烧或排气来帮助降低压力时,就会发生异常燃烧或排气。
室外空气通过进气口进入建筑物,为建筑物居住者提供通风空气。同样,建筑物排气系统从建筑物中去除空气并将污染物排到大气中。如果进气或排气系统设计不佳,来自附近室外来源(例如汽车尾气、应急发电机、附近建筑物的排气管)或建筑物本身(例如实验室通风柜排气、管道通风口)的污染物会在稀释前进入建筑物。稀释不当的污染物可能会产生异味、影响健康并降低室内空气质量。本章讨论了排气管的正确设计和进气口的位置,以避免对空气质量产生不利影响。2017 年 ASHRAE 手册—基础第 24 章更详细地描述了建筑物周围的风和气流模式。相关信息还可在本卷的第 9、18、33、34 和 35 章、2017 年 ASHRAE 手册—基础知识的第 11 和 12 章以及 2016 年 ASHRAE 手册—HVAC 系统和设备的第 29、30 和 35 章中找到。
室外空气通过进气口进入建筑物,为建筑物居住者提供通风空气。同样,建筑物排气系统从建筑物中去除空气并将污染物排到大气中。如果进气或排气系统设计不佳,来自附近室外来源(例如汽车尾气、应急发电机、附近建筑物的排气管)或建筑物本身(例如实验室通风柜排气、管道通风口)的污染物会在稀释前进入建筑物。稀释不当的污染物可能会产生异味、影响健康并降低室内空气质量。本章讨论了排气管的正确设计和进气口的位置,以避免对空气质量产生不利影响。2017 年 ASHRAE 手册—基础第 24 章更详细地描述了建筑物周围的风和气流模式。相关信息还可在本卷的第 9、18、33、34 和 35 章、2017 年 ASHRAE 手册—基础知识的第 11 和 12 章以及 2016 年 ASHRAE 手册—HVAC 系统和设备的第 29、30 和 35 章中找到。
适用于根据指令 060 选择加入原油沥青车队平均值 (CBFA) 的场地。要使用此灵活性机制,场地必须在基线条件下符合 OVG,车队必须在基线条件下符合 CBFA。只要能够证明车队在抵消额度期间持续符合 CBFA,场地就可以使用 15,000 立方米/月的上限动态基线产生排放抵消。如果车队不遵守 CBFA,则任何场地都无法在车队不遵守的时间段内产生排放抵消。所有其他协议条件/要求保持不变。请注意,如果场地在选择加入 CBFA 之前根据协议启动了排气减排项目,则必须从场地选择加入 CBFA 之日起使用此灵活性机制。
本报告确定了技术研发(R&D),这可能会导致天然气爆炸和排气性在石油和天然气生产过程中从页岩和紧密地层产生中。行业,监管机构和公众都同意,应用新技术和实践来捕获浪费资源并最大程度地减少有害排放。燃烧和通风活动代表了可识别的温室气体排放点的可识别点源,特别是二氧化碳(CO 2)和甲烷(CH 4),这会导致气候变化。甲烷具有比二氧化碳更大的全球变暖潜力,因此具有特殊的关注。美国能源部(DOE)化石能源和碳管理办公室(FECM)的研发重点是加速模块化天然气转换技术的开发,这些技术将为额外的选择提供额外的选择,以否则将被转换或将其排气到增值产品中;减少田间温室气体排放。天然气燃烧和排气:天然气是碳氢化合物化合物的气态混合物,主要是甲烷和非氢气气体(例如,水蒸气,二氧化碳,氦气,硫化氢氢和氮)。尽管燃烧比通风更常见,但这两种活动通常在石油和天然气开发过程中发生,这是钻探,生产,收集,加工和运输运营的一部分。燃烧是使用专用火焰在井口燃烧天然气和氧气的过程,该火焰将甲烷(和其他可燃气体)转换为二氧化碳,水和热量。可燃气体最常见于紧急缓解,过度压力,工艺兴奋,初创企业,关闭以及其他操作安全原因。通风是指直接释放天然气,并在某些州受到限制。关于排气和耀斑实践的规定,必须在州一级颁布。法规通常施加释放限制和天然气捕获要求。从温室气体的角度来看,燃烧的危险较小,因为发泄的甲烷比爆炸导致的二氧化碳更有效。通风和燃烧的基础设施因位置而异,通常将气体管道到偏远的位置,通常是高架结构,并使用特殊设计的燃烧器尖端,辅助燃料,蒸汽或气动系统在露天的露天火焰中释放或燃烧。
本研究旨在为歧管找到最佳材料,并改善Unimap汽车赛车团队(UNIART)排气歧管的气流。排气歧管是排气系统的一部分,它收集并从气缸盖到排气插座排气气。排气歧管的设计对发动机性能很重要。使用SolidWorks软件对排气歧管的当前设计和新设计进行了建模。不锈钢,铸铁和低碳钢作为歧管材料,并通过进行稳态热分析来研究。根据压力和速度分析和评估了歧管中空气的流动。在称为ANSYS的计算流体动力学分析软件中模拟流体流量和热分析。热分析的结果证明,不锈钢比其他材料更好,因为它具有高温差和低热量。比较了排气歧管的当前设计和新设计之间的流体流量分析结果。结果表明,经过验证的设计2在出口处具有较高的速度值,在入口处的压力较低,从而改善了排气歧管中的气流。
伴生气:从油井中产出的气体。 保存:回收伴生气,用作生产设施的燃料、其他有用用途(如发电)、出售或注入油气池。 紧急燃烧或排气:当设施内的安全控制措施启动,设备减压以避免爆炸、火灾或灾难性设备故障造成的人身伤害或财产损失时,就会发生紧急燃烧或排气。可能的原因包括压力安全阀超压和紧急关闭。 设备组件:与碳氢化合物接触并有可能排放无组织排放物的设备组件。 燃烧:在燃烧器或焚化炉中燃烧气体。 非伴生气:从气井中产出的气体。 非常规燃烧或排气:间歇性和不频繁的燃烧或排气。有两种类型:计划内燃烧和无计划内燃烧。计划燃烧或排气:操作员可以控制燃烧或排气的时间和持续时间,也可以控制排放速率。计划燃烧或排气是故意对加工设备或管道系统减压(吹扫)的结果。计划燃烧或排气可能发生在管道排污、设备减压、启动、设施检修和油井测试期间。计划外燃烧或排气:与保护设施完整性和保护安全密切相关的紧急或异常操作活动。操作员无法控制这些活动何时发生。有两种类型:异常燃烧或排气。异常燃烧或排气:当一个或多个工艺参数超出允许的操作或设计极限,需要燃烧或排气来帮助恢复生产控制时,就会发生异常燃烧或排气。异常燃烧或排气可能是由于
1. 待评估的技术 正在考虑两项变革性使能技术:(1) 先进的偏滤器概念,有可能解决反应堆相关条件下功率耗尽的生存挑战;(2) 紧凑、高场、高功率密度 DTT,可以测试并可能提高此类概念的技术就绪水平。目前的实验和模拟指出了反应堆的挑战级别:反应堆级托卡马克(例如 ARIES、Demo、ARC)边界的未缓解热通量预计在 10 GW/m 2 的数量级上,平行于磁场,比目前的实验高 10 倍。此外,必须完全抑制偏滤器靶板侵蚀。传统偏滤器无法处理这样的功率通量。先进的偏滤器概念显示出处理这些热负荷的潜力,但目前尚无设施将其技术就绪水平提高到 TRL2 级以上。我们对控制物理学(等离子体和中性传输与原子物理学相结合的复杂非线性相互作用)的了解还很有限,无法自信地预测它们在反应堆级托卡马克中的表现。在反应堆级条件下测试潜在的动力排气解决方案需要建立一个新的专用实验,该实验可以将 TRL 提高到 6。关于如何构建用于测试反应堆相关偏滤器系统的“风洞”,已经有多个考虑 1-3。他们之间的共识是偏滤器等离子体条件
许多食品和饮料过程需要大量的水。至关重要的是,使用所用水受到颗粒或微生物污染,以确保过程操作不会无意中污染。可以使用几种方法来确保水不受污染。其中之一是添加臭氧,该臭氧充当抗菌和氧化剂,并在周围以及热水储存和分配系统中添加臭氧。通常,将水存储在装有灭菌级通风过滤器的水箱中,以确保可以正确排气储罐以填充和排空,而不会冒来自坦克环境的二次污染的风险。本文档将讨论选择用于臭氧化的热或环境水箱的通风过滤器的注意事项。