为了给舰载机的适航性提供参考,本文对尾喷流场及其对飞行甲板的影响进行了研究。首先建立了航空母舰和舰载机的几何模型,并在此基础上划分了非结构化四面体网格进行数值分析。然后,本文对4架舰载机在舰首准备起飞时尾喷流场进行了数值模拟,以评估其对喷气导流板(JBD)和飞行甲板的影响。分析过程中采用了标准k-ε方程、三维N-S方程和计算流体力学(CFD)理论。在求解方程时,还考虑了风和射流的热耦合。利用CFD软件FLUENT模拟给出了速度和温度分布。结果表明:(1)该解析方法可以用于模拟具有复杂几何模型的气动问题,且结果可靠性高;(2)通过分析可以优化安全工作区、JBD安装方案和起飞位置布置。
DeNOx 装置负责烟气脱硝。为此添加氨,氨与氮氧化物反应生成氮和水。泄漏测量用于控制添加的氨量。这有助于从两个方面优化脱硝过程:一方面,添加适量的氨可显著降低成本,另一方面可最大限度地减少排放。通过直接安装在排气流中的 LDS 6 现场气体分析仪实时测量氨浓度。测量值用于保证遵守限值,并控制和优化 DeNOx 装置。因此,可以通过应用现场气体测量来考虑石化行业的环境保护。
重型燃气轮机由于发电率较低,灵活性和热效率而在发电中发挥了越来越重要的作用。在严格的环境条件下,燃气轮机的主要子系统(如压缩机,燃烧器和涡轮机)在运行时间内降低,这在很大程度上影响了系统的效率和生产力。因此,开发有效方法以监测重型燃气轮机的性能降解以进行系统预测性维护,从而提高机器的效率和生产率至关重要。本文提出了一种新的物理知情的机器学习方法,以通过无缝整合热力学热平衡机制,组件特征,多源数据和人工神经网络模型来预测燃气轮机的降解。考虑到流量,质量和能量平衡,建立了基于机制的热力学模型,然后将其集成到系统水平,以在不同条件下对燃气轮机进行性能模拟。系统模型能够有效地模拟那些无法测量的参数的值(例如gt排气流)或不准确测量(例如燃油流)。基于机器学习的数据清洁方法用于预处理燃气轮机的多元原始数据。使用ISO条件下的物理信息模型获得的设计性能数据和校正值之间的差异用于评估性能降解。从
2017 年至 2023 年期间,共对 1,221 口井进行了空中勘测,包括未退役井,这些井用于验证该技术的适用性。在退役井中,我们努力对不同类型和特征的井进行代表性采样,包括旧井、已知表面套管排气流或井筒完整性历史、过压区、H 2 S 含量、表面套管安装深度或存在裸眼废弃塞的井。如果空中勘测表明井可能存在泄漏,BCER 将进行地面检查。如果 BCER 发现泄漏井的证据或潜在证据,监管机构将通知许可证持有人进行进一步调查,如果确认存在泄漏,则进行修复。在 1,221 口空中勘测井中,有 25 口井有初步迹象表明存在甲烷泄漏。随后,通过地面检查对泄漏地点进行了检查,确认有 6 处废弃井发生泄漏(其中 3 处已测量,报告的泄漏率低于 1.0 立方米/天),10 处未发生甲烷泄漏,另外 9 处目前正在进一步调查。
特性 优势 构建块设计 • 简化改造、翻新和更换 • 允许堆叠单元以减少占地面积 • 允许使用各种风扇和线圈 • 优化线圈和风扇性能 • 允许在自定义应用中使用目录单元 • 支持灵活的模块排列 工程结构和外壳 • 提供坚固的单元结构,实现高性能和长使用寿命 • 通过柱板结构为堆叠单元提供强度 • 支持灵活地访问单元内部维护 IAQ 就绪单元 • 符合 ASHRAE 标准 62.1 要求 • 降低安装、启动和运行成本 • 直接控制通风气流 • 去除空气中的污染物 • 抑制微生物生长 交钥匙控制选项 • 支持单一来源责任 • 降低控制系统安装成本 • 确保可靠运行 • 提供开放协议 声学解决方案 • 使单元满足所需的 NC(噪声标准)水平 • 最大限度地减少声源以降低系统的初始成本 • 提供准确的、经过 ARI 标准 260 测试的声音数据 节能解决方案 • 从排气流中回收能源 • 能够缩小空气处理机组和其他系统组件的尺寸 • 降低系统组件的能耗
iii。在2024年5月30日,BCER通知了该法案第37(2)条的违规馆,并定向馆,以在24小时内纠正违规行为。iv。2024年5月31日,Pavilion要求延长至2024年6月7日。这是授予的。V.在2024年6月8日,Pavilion要求延长至2024年6月18日。这是授予的。vi。2024年6月24日,Pavilion要求延长至2024年6月27日。这是授予的。vii。2024年7月11日,BCER工作人员参加了该地点,并观察到了两个坦克的天然气逃脱。VIII。 2019年10月31日的AD 100018045修正案,允许凉亭以最大每日1.5 E3M3/天的最大每日速率在设施上进行火炬溶液气体,最大H2S浓度为7400 ppm,为期12个月。 该修正案建议,将来对解决方案气体的额外爆发需要在12个月以后的额外爆炸需要进一步的修正案。 ix。 井的表面套管排气流被用作泵插孔的燃气。 在2021年9月8日测试的2021年9月14日,Pavilion于2021年9月14日报道的表面壳体排气口的流量为每天115.31 M3。 这比允许的每日通风更多的是100平方米。 X. 在2024年6月的最新一个月中,Pavilion报告说,每日生产气体的平均每天为2.36 m3/天。 xi。 2020年12月至2024年6月期间的石油产量为10 296.1 M3。 XII。 xiii。 xiv。VIII。2019年10月31日的AD 100018045修正案,允许凉亭以最大每日1.5 E3M3/天的最大每日速率在设施上进行火炬溶液气体,最大H2S浓度为7400 ppm,为期12个月。该修正案建议,将来对解决方案气体的额外爆发需要在12个月以后的额外爆炸需要进一步的修正案。ix。井的表面套管排气流被用作泵插孔的燃气。在2021年9月8日测试的2021年9月14日,Pavilion于2021年9月14日报道的表面壳体排气口的流量为每天115.31 M3。这比允许的每日通风更多的是100平方米。X.在2024年6月的最新一个月中,Pavilion报告说,每日生产气体的平均每天为2.36 m3/天。xi。2020年12月至2024年6月期间的石油产量为10 296.1 M3。XII。 xiii。 xiv。XII。xiii。xiv。2020年12月至2024年6月的总天然气产量为2 702 200 m3。Pavilion于2024年7月提交了进一步的许可修正案。钻探和生产法规(DPR)的第42(2)条规定:遵守第(3)和(5)款,除非为紧急目的或进行钻孔操作需要燃烧,否则许可证持有人不得爆炸。xv。DPR第42(5)条规定,如果设施许可证中包括炸弹,则设施许可证持有人可以在设施中发生火炬气体。xvi。我认为馆未遵守DPR的第42(2)条。xvii。我认为该命令是保护环境所必需的。
摘要:空调系统总负载的40%可以归因于凝结除湿化。然而,新的水蒸气选择性膜提供了一个独特的机会,可以通过避免相变大大减少去除水分的功率要求,因此被评为传统HVAC系统的最佳选择。迄今为止,所有此类系统都依赖于恒定温度的假设,甚至称为“等温度除湿”。这项工作提出了一种基于膜的空气冷却和除湿方法,该方法称为活性膜能量交换器(AMX),该方法是第一个提供同时,脱钩的,空气冷却和除湿的方法。建议的AMX配置使用两种蒸气选择性膜模块,并在它们之间使用水蒸气压缩机,使用第二个膜模块将蒸气拒绝进入排气流。使用蒸气压缩循环在每个膜模块中的冷却和加热线圈在空气流之间移动热量。为在100%室外空调系统中集成的AMX提供了详细的稳态,热力学模型。对AMX的限制参数和设计考虑因素(例如压缩机效率)进行了系统的分析,以针对广泛的室外空气条件进行了比较,并与标准和最先进的专用室外空气系统进行了比较。这种新方法的表现可以超过所有其他标准和最先进的系统,在传统专用的户外空气系统上获得了1.2-4.7倍的COP。关键字:膜,除湿,蒸气选择性,空气处理,室外空气1。最后,一项建筑模拟案例研究预测,在炎热,潮湿的气候下,医院建筑中的冷却能源节省高达66%。简介
使用压电设备从空调冷凝器中收集能量 摘要 使用校园内的几台空调机组来确定空调冷凝器机组中潜在的废能来源,并设计了能量收集方法。这些能量收集方法称为使用压电设备的振动和气流驱动能量收集。目标是从排气流中产生电能(类似于喷气发动机的加力燃烧器,但规模要小得多)。对于压电设备,想法是使设备振动以产生电能。工程技术课程的学生和教师研究了空调机组,以确定潜在的废能来源。根据季节、振动水平和冷凝器的排气扇流量进行测量以确定运行时间。进行了测量,并与计算出的从冷凝器中获取的潜在功率进行了比较。这个本科研究项目是全校范围内为促进节能和研究使用清洁可再生能源而开展的几项工作之一。简介 压电性一词源于希腊语 piezein ,意思是挤压和按压。直接效应和逆效应是两种压电效应。在直接效应中,电荷由机械应力产生。在逆效应中,施加电场会产生机械运动。压电能量收集利用直接效应,k p 、k 33 、d 33 、d 31 、g 33 是压电材料特性的特征。k 因子,称为压电耦合因子,是方便直接测量机电效应整体强度的典型方法 [1-4]。压电能量收集是一种通过应变压电材料将机械能转化为电能的方法 [5]。压电材料的应变或变形会导致整个设备中的电荷分离,产生电场并导致与施加的应力成比例的电压降。振荡系统通常是悬臂梁结构,在杠杆的未连接端有一个质量,因为它为给定的输入力提供更高的应变 [6]。产生的电压随时间和应变而变化,平均而言有效地产生不规则的交流信号。压电能量转换产生的电压和功率密度水平比电磁系统相对较高。此外,压电效应能够从机械应力中产生晶体和某些类型陶瓷等元素的电势 [7]。如果压电材料未短路,则施加的机械应力会在材料上产生电压。用于清除振动能量的最常见设备类型是悬臂压电设备,它通过弯曲、摇晃和变形来发电 [8]。有许多基于压电材料的应用,例如电动打火机。在这个系统中,按下按钮会导致弹簧锤击中压电晶体,产生的高电压会跨越小火花间隙,从而点燃可燃气体。按照同样的想法,便携式打火机用于点燃燃气烤架和炉灶,以及各种
使用压电设备从空调冷凝器中收集能量 摘要 使用校园内的几台空调机组来确定空调冷凝器机组中潜在的废能来源,并设计了能量收集方法。这些能量收集方法称为使用压电设备的振动和气流驱动能量收集。目标是从排气流中产生电能(类似于喷气发动机的加力燃烧器,但规模要小得多)。对于压电设备,想法是使设备振动以产生电能。工程技术课程的学生和教师研究了空调机组,以确定潜在的废能来源。根据季节、振动水平和冷凝器的排气扇流量进行测量以确定运行时间。进行了测量,并与计算出的从冷凝器中获取的潜在功率进行了比较。这个本科研究项目是全校范围内为促进节能和研究使用清洁可再生能源而开展的几项工作之一。简介 压电性一词源于希腊语 piezein ,意思是挤压和按压。直接效应和逆效应是两种压电效应。在直接效应中,电荷由机械应力产生。在逆效应中,施加电场会产生机械运动。压电能量收集利用直接效应,k p 、k 33 、d 33 、d 31 、g 33 是压电材料特性的特征。k 因子,称为压电耦合因子,是方便直接测量机电效应整体强度的典型方法 [1-4]。压电能量收集是一种通过应变压电材料将机械能转化为电能的方法 [5]。压电材料的应变或变形会导致整个设备中的电荷分离,产生电场并导致与施加的应力成比例的电压降。振荡系统通常是悬臂梁结构,在杠杆的未连接端有一个质量,因为它为给定的输入力提供更高的应变 [6]。产生的电压随时间和应变而变化,平均而言有效地产生不规则的交流信号。压电能量转换产生的电压和功率密度水平比电磁系统相对较高。此外,压电效应能够从机械应力中产生晶体和某些类型陶瓷等元素的电势 [7]。如果压电材料未短路,则施加的机械应力会在材料上产生电压。用于清除振动能量的最常见设备类型是悬臂压电设备,它通过弯曲、摇晃和变形来发电 [8]。有许多基于压电材料的应用,例如电动打火机。在这个系统中,按下按钮会导致弹簧锤击中压电晶体,产生的高电压会跨越小火花间隙,从而点燃可燃气体。按照同样的想法,便携式打火机用于点燃燃气烤架和炉灶,以及各种