使用 1/10 比例 CH-47B/C 型转子的风洞试验数据研究失速条件下的转子行为,该风洞试验提供了一组测试条件,从未失速到轻度失速到一些深度失速条件,涵盖了很宽的前进比范围。在风洞中测量的转子性能与 NASA/Army UH-60A 空气载荷计划期间测量的主转子性能相似,尽管这两个转子完全不同。分析 CAMRAD II 已用于预测转子性能和载荷。全尺寸翼型试验数据针对雷诺数效应进行了校正,以便与模型比例转子试验进行比较。计算出的功率系数与雷诺数校正翼型表的失速以下测量值显示出良好的相关性。计算中使用了各种动态失速模型。波音模型显示升力在低推进比时增加,而 Leishman-Beddoes 模型在 µ = 0.2 时显示扭矩相关性优于其他模型。然而,动态失速模型通常对转子功率和扭矩预测的影响很小,尤其是在较高的推进比下。
对我的生活产生了深远的影响。因此,这本书也是对我父母和直系亲属的感谢,以及对我在学生时代和职业生涯中幸运遇到的老师和导师的感谢。这也是对我年轻同事不懈的热情和努力的致敬,他们帮助我们实现了共同的梦想。艾萨克·牛顿关于站在巨人肩膀上的名言对每一位科学家都适用,我当然要从杰出的印度科学家那里得到巨大的知识和灵感,其中包括维克拉姆·萨拉巴伊、萨蒂什·达万和布拉姆·普拉卡什。他们在我的生活中和印度科学史上扮演了重要角色。1991 年 10 月 15 日,我满 60 岁。我决定将退休后的时间用于履行我在
亮点 2023 年投资额为 68 亿美元(2022 年为 69 亿美元) 23 年第四季度投资额为 20.4 亿美元(23 年第三季度为 16 亿美元) Seraphim 投资指数排名第 267 位(23 年第三季度排名第 220 位) Seraphim 交易指数排名第 303 位(23 年第三季度排名第 282 位) 第四季度达成的最大交易额为 3 亿美元 – Firefly 第四季度平均交易规模为 2200 万美元(23 年第三季度为 2400 万美元) 第四季度交易规模中值为 650 万美元(23 年第三季度为 410 万美元) 2023 年并购交易数为 30 笔(2022 年为 22 笔)
摘要 - 多项式函数一直是多翼混沌系统(MWCSS)的电路实现和工程化的主要限制。为了消除这种瓶颈,我们通过在Sprott C系统中引入正弦函数来构建一个简单的MWC,而无需多项式函数。理论分析和数值模拟表明,MWC不仅可以使用任意数量的黄油量产生多量器的吸引子,而且还可以通过多个ple方式来调整黄油液的数量,包括自我振荡时间,控制参数和初始状态。为了进一步探索所提出的MWC的优势,我们使用可循环可用的电子元素实现了其模拟电路。结果是,与传统的MWCS相比,我们的电路实施大大减少了电子组件的消耗。这使MWCS更适合许多基于混乱的工程应用程序。更重要的是,我们提出了MWC在混沌图像加密中的应用。直方图,相关性,信息能量和钥匙灵敏度表明,简单的图像传感方案具有很高的安全性和可靠的加密性能。最后,我们开发了一个可编程的门阵列测试平台,以实现基于MWCS的图像加密系统。理论分析和实验结果都验证了所提出的MWC的可行性和可用性。
旋翼 AH-64 阿帕奇长弓直升机提供昼夜和恶劣天气攻击直升机能力。阿帕奇是陆军的主要攻击直升机。它是一种反应迅速的机载武器系统,可以近距离和纵深作战,以摧毁、扰乱或延缓敌军。当今陆军库存中的三种阿帕奇飞机是 AH-64D 长弓 Block I 和 Block II 以及最新的 AH-64E 阿帕奇。阿帕奇的最大速度为 145 节。它的最大总重量范围为 230 海里,并具有使用内部和外部油箱扩展范围的能力。阿帕奇拥有全套飞机生存设备,能够抵御 23 毫米以下子弹在关键区域的打击。阿帕奇弹药包括地狱火导弹(RF/SAL 版本)、2.75 英寸火箭弹(所有版本)和 30 毫米高爆燃烧弹 (HEI)。AH-64E 还具有有人/无人协同的互操作性 (LOI) 4 级能力。LOI 4 允许 AH-64E 接收无人机系统 (UAS) 视频、控制 UAS 的有效载荷并控制 UAS 的飞行路径。最初的 AH-64A 阿帕奇于 1984 年首次服役,现已从陆军库存中移除。所有剩余的 AH-64A 飞机都已纳入 AH-64D Block II 生产线。AH-64D Longbow Block II 的部署方式是新生产和再制造 AH-64A 飞机相结合。AH-64D 采用了 Longbow 火控雷达 (FCR),可在白天或夜晚、恶劣天气和战场遮蔽条件下使用。AH-64D 主要由桅杆安装的毫米波火控雷达、雷达频率干涉仪和雷达频率发射后不管的地狱火导弹组成。Block II 的生产已于 9 月结束。长弓的数字化目标捕获系统提供自动检测、定位、分类、优先排序和目标移交。AH-64D 驾驶舱经过重新设计,所有系统均数字化并实现多路复用。人力和人员整合计划机组人员站具有多功能显示器,可减少机组人员工作量并提高效率。AH-64D 为机动部队指挥官提供全天候、在任何条件下真正协调的快速射击(一分钟内打击 16 个独立目标)能力。阿帕奇机队的最新版本是 AH-64E 阿帕奇。AH-64E 计划于 2011 年 11 月交付了第一架飞机。AH-64E 项目与之前的阿帕奇维持项目类似,将更新或改造现有的空中
美国宇航局艾姆斯研究中心于 20 世纪 90 年代初对超音速商用客运斜全翼概念进行了设计研究。这项研究的参与者包括美国宇航局艾姆斯研究中心在斜翼设计方面拥有长期专业知识的工作人员,以及来自西雅图波音商用飞机公司和加州长滩道格拉斯飞机公司的工程师,以及斯坦福大学的研究团队。行业合作的目的是确保研究中包含现实世界的设计约束,并获得行业设计专业知识。斯坦福大学的团队建造并试飞了一架 17 英尺跨度的斜全翼无人机,展示了 3% 负静态稳定性的飞行。设计研究最终产生了两种机翼设计,称为 OAW-3 和 DAC-1。OAW-3 机翼由 NASA Ames 团队设计,代表了基于配置约束和任务性能指标的高度优化设计。DAC-1 机翼由道格拉斯飞机公司的团队设计。它是一种经典的椭圆形平面形状,具有高度的气动形状优化,但设计并未根据整体任务性能指标进行优化。虽然两个机翼都在 9 x 7 超音速风洞中进行了测试,但只有 OAW-3 机翼拥有完整的控制面和发动机舱。本报告中描述的风洞数据仅在 NASA OAW-3 配置上获得。