使用穿透式细胞外多通道电极阵列(通常称为神经探针)记录神经元活动是探测神经元活动最广泛的方法之一。尽管有大量可用的细胞外探针设计,但尖峰分类软件要求的电极通道顺序和相对几何形状的映射这一耗时过程总是留给最终用户。因此,这个手动过程容易出现错误映射,进而导致不良的尖峰分类误差和效率低下。在这里,我们介绍了 ProbeInterface,这是一个开源项目,旨在通过消除在尖峰分类之前手动进行探针映射的步骤来统一神经探针元数据描述,以分析细胞外神经记录。ProbeInterface 首先是一个 Python API,使用户能够以任何所需的复杂度级别创建和可视化探针和探针组。其次,ProbeInterface 有助于以可重现的方式生成任何特定数据采集设置的全面接线描述,这通常涉及使用记录探头、探头、适配器和采集系统。第三,我们与探头制造商合作编译了一个可用探头的开放库,可以使用我们的 Python API 在运行时下载。最后,使用 ProbeInterface,我们定义了一种用于探头处理的文件格式,其中包含 FAIR 探头描述的所有必要信息,并且与神经科学中的其他开放标准兼容且互补。
使用穿透式细胞外多通道电极阵列(通常称为神经探针)记录神经元活动是探测神经元活动最广泛的方法之一。尽管有大量可用的细胞外探针设计,但尖峰分类软件要求的电极通道顺序和相对几何形状的映射这一耗时过程总是留给最终用户。因此,这个手动过程容易出现错误映射,进而导致不良的尖峰分类误差和效率低下。在这里,我们介绍了 ProbeInterface,这是一个开源项目,旨在通过消除在尖峰分类之前手动进行探针映射的步骤来统一神经探针元数据描述,以分析细胞外神经记录。ProbeInterface 首先是一个 Python API,使用户能够以任何所需的复杂度级别创建和可视化探针和探针组。其次,ProbeInterface 有助于以可重现的方式生成任何特定数据采集设置的全面接线描述,这通常涉及使用记录探头、探头、适配器和采集系统。第三,我们与探头制造商合作编译了一个可用探头的开放库,可以使用我们的 Python API 在运行时下载。最后,使用 ProbeInterface,我们定义了一种用于探头处理的文件格式,其中包含 FAIR 探头描述的所有必要信息,并且与神经科学中的其他开放标准兼容且互补。
• 基本单元中可安装 4 个输入模块 提供以下模块: – 4 个电感式探头输入(兼容 Mahr、Tesa、Marposs 或 Federal 探头) – 2 个增量式探头输入 – 1 个气动测量设备输入 – 4 个直流电压信号输入 • RS232 接口 • 模拟输出 • 6 个数字输入用于启动测量、主测量/零点设置、发送数据 • 12 个数字输出,最多可容纳 4 种特性:接受 - 拒绝 - 返工分类、集体接受/拒绝、测量时间、10 个等级、BCD 接口、超出警告限值 - 超出公差
• 基本单元中可安装 4 个输入模块 提供以下模块: – 4 个电感式探头输入(兼容 Mahr、Tesa、Marposs 或 Federal 探头) – 2 个增量式探头输入 – 1 个气动测量设备输入 – 4 个直流电压信号输入 • RS232 接口 • 模拟输出 • 6 个数字输入用于启动测量、主测量/零点设置、发送数据 • 12 个数字输出,最多可容纳 4 种特性:接受 - 拒绝 - 返工分类、集体接受/拒绝、测量时间、10 个等级、BCD 接口、超出警告限值 - 超出公差
• 基本单元中可安装 4 个输入模块 提供以下模块: – 4 个电感式探头输入(兼容 Mahr、Tesa、Marposs 或 Federal 探头) – 2 个增量式探头输入 – 1 个气动测量设备输入 – 4 个直流电压信号输入 • RS232 接口 • 模拟输出 • 6 个数字输入用于启动测量、主测量/零点设置、发送数据 • 12 个数字输出,最多可容纳 4 种特性:接受 - 拒绝 - 返工分类、集体接受/拒绝、测量时间、10 个等级、BCD 接口、超出警告限值 - 超出公差
• 基本单元中可安装 4 个输入模块 提供以下模块: – 4 个电感式探头输入(兼容 Mahr、Tesa、Marposs 或 Federal 探头) – 2 个增量式探头输入 – 1 个气动测量设备输入 – 4 个直流电压信号输入 • RS232 接口 • 模拟输出 • 6 个数字输入用于启动测量、主测量/零点设置、发送数据 • 12 个数字输出,最多可容纳 4 种特性:接受 - 拒绝 - 返工分类、集体接受/拒绝、测量时间、10 个等级、BCD 接口、超出警告限值 - 超出公差
所有湿度测试装置均根据客户规格配置。请从以下选项中选择符合您要求的解决方案,例如,带电缆探头的湿度测试 600、标准电缆长度(2 米)、标准探头长度(210 毫米)、特氟隆过滤器、H5 显示器、-30..+50 °Ctd(露点)作为通道 1 输出和 -20...120 °C 作为通道 2 输出。
传统上,混凝土中钢筋的腐蚀速率是使用极化方法(例如恒电位、恒电流或动电位技术)来确定的。这些技术相当慢,并且都需要与钢筋进行电连接,而这又需要损坏混凝土保护层。因此,尽管精度令人满意,但这些技术很少用于土木工程结构。最近开发的无连接电脉冲响应分析 (CEPRA) 方法消除了钢筋连接的需要,并允许在每次测量不到 10 秒的时间内确定腐蚀速率。这使用户能够以对混凝土元件的最小干扰进行腐蚀调查,并减少检查大型结构所需的时间。该方法基于沿所考虑的钢筋使用 Wenner 阵列探头(四点探头),并在从外部探头施加阶跃电压后监测两个内部探头之间的电位差。利用两个内部探头之间的电位差,可以使用本文档中概述的电路模型确定系统的特性,包括混凝土电阻率和极化电阻/腐蚀率。该技术已作为手持设备 (iCOR®) 商业化,并已在多个实验室和现场研究中使用,其中发现其准确性与其他成熟方法相似。
• 基本单元中可安装 4 个输入模块 提供以下模块: – 4 个电感式探头输入(兼容 Mahr、Tesa、Marposs 或 Federal 探头) – 2 个增量式探头输入 – 1 个气动测量设备输入 – 4 个直流电压信号输入 • RS232 接口 • 模拟输出 • 6 个数字输入用于启动测量、主测量/零点设置、发送数据 • 12 个数字输出,最多可容纳 4 种特性:接受 - 拒绝 - 返工分类、集体接受/拒绝、测量时间、10 个等级、BCD 接口、合格 - 超出警告限值 - 超出公差
最近,研究人员使用细长的静压探头在 Longshot 高超声速风洞的自由流中进行测量。他们发现,压力大于假设等熵喷嘴流获得的理论值。现在研究了喷嘴膨胀过程中流动凝结的存在,这可能是非等熵性的来源,以解释自由流静压不匹配。研究了不同的停滞温度,它们会延迟或促进流动成核。经证实,Longshot 风洞的标准操作条件没有凝结。在较低停滞温度下进行的实验成功促进了氮的凝结,静压探头可以检测到。与异质成核理论一致,已经实现了微弱的流动过饱和。证明了静压探头的精确性能及其对高超声速流动表征的实用性。