纠缠是量子力学的一个关键特征 1–3 ,在计量学、密码学、量子信息和量子计算 4–8 等领域有应用。纠缠已在从微观 9–13 到宏观 14–16 的各种系统和长度尺度中被观察到。然而,在可访问的最高能量尺度上,纠缠仍然基本上未被探索。这里,我们报告了在大型强子对撞机产生的顶-反顶夸克事件中对纠缠的最高能量观测,使用由 ATLAS 实验记录的质子-质子碰撞数据集,其质心能量为 √ s = 13 TeV,积分光度为 140 倒数飞靶 (fb) −1。自旋纠缠是通过测量单个可观测量 D 检测到的,D 是由带电轻子在其母顶夸克和反顶夸克静止框架中的夹角推断出来的。可观测量是在顶夸克-反顶夸克产生阈值附近的一个狭窄区间内测量的,在此区间内纠缠检测预计会很显著。它是在一个用稳定粒子定义的基准相空间中报告的,以尽量减少因蒙特卡洛事件生成器和部分子簇射模型在模拟顶夸克对产生方面的局限性而产生的不确定性。当 m 340 GeV < < 380 GeV tt 时,纠缠标记测得为 D = −0.537 ± 0.002(统计)± 0.019(系统)。观测结果与没有纠缠的情况相差超过 5 个标准差,因此这是首次观察到夸克对中的纠缠,也是迄今为止最高能量的纠缠观测。
和C11委员会内的性别平衡。 在ICHEP2024期间的C11年度会议上,我们选择了2026年和2027年的主要C11会议出价,ICHEP2026会议将在曼谷,泰国举行,并在中国上海举行了Lepton Photon研讨会。 该决定支持我们对区域轮换的承诺。 TIPP系列会议每三年举行一次,于2023年在南非成功举办。。 竞标2026会议被接受,在C11年度会议期间,孟买被选为东道国城市。 此外,我们将在本月完成指导委员会主席并修改章程。和C11委员会内的性别平衡。在ICHEP2024期间的C11年度会议上,我们选择了2026年和2027年的主要C11会议出价,ICHEP2026会议将在曼谷,泰国举行,并在中国上海举行了Lepton Photon研讨会。该决定支持我们对区域轮换的承诺。TIPP系列会议每三年举行一次,于2023年在南非成功举办。竞标2026会议被接受,在C11年度会议期间,孟买被选为东道国城市。此外,我们将在本月完成指导委员会主席并修改章程。
ispace 和小行星采矿公司同意执行未来的月球任务 东京——2024 年 10 月 9 日——全球月球探测公司 ispace, inc. (ispace) (TOKYO: 9348) 和总部位于伦敦的太空机器人公司小行星采矿公司 (AMC) 两家公司今天宣布,已达成协议,将在未来的 ispace 月球表面任务中进行太空机器人演示。 两家公司签署的谅解备忘录提供了一个合作框架,该框架设想了一项未来的任务,其中 ispace 月球着陆器将把 AMC 的太空机器人(太空能力小行星机器人 - 探测器或 SCAR-E)送到月球表面,作为未来小行星采矿工作的技术演示。 在太空中,SCAR-E 可用于小行星和月球的资源探索,能够应对传统轮式探测车目前无法进入的地形,例如陨石坑。 ispace 最早将在 2024 年 12 月之前发射 RESILIENCE 月球着陆器(这是该公司的第二次月球运输任务),该公司同时在美国和日本的业务实体中设计了两个后续系列的月球着陆器。一旦达成任务计划并获得资金,SCAR-E 机器人将在未来的任务中亮相。
摘要Dune FAR检测器旨在检测由中微子与大型液体氩靶的相互作用的带电产物产生的光子和电子。第一个沙丘远检测器(FD1)的光子检测系统(PDS)由6000个光子检测单元组成,称为X-arapuca。在LAR中释放粒子能量产生的及时光脉冲的检测将补充并增强沙丘壁球时间投影室。它将改善标记的非光束事件,并在低能启用超新星中微子的触发和量热法。X- Arapuca是几个组件的组件。其Photon检测效率(PDE)取决于组件的设计,单个组件的等级和耦合。X-arapuca PDE是PDS敏感性的主要参数之一,进而决定了沙丘对在银河系中检测核心偏曲超新星和核子衰减搜索的敏感性。在这项工作中,我们介绍了FD1 X-Arapuca基线设计的绝对PDE的最终评估,该设计在两个具有独立方法和设置的实验室中测量。在Palomares中报道了初步结果(Jinst 18(02):C02064,https://doi.org/10.1088/1748-0221/18/18/02/C02064,2023)。这些X-Arapuca设备的一百六十个单元已在CERN NETRINO平台的NP04设施中部署了1:20秤
Stott 博士将讨论使用人工智能在卫星雷达图像中探测冰山。最终,该冰山探测器可以集成到海上安全系统中,因为他的团队目前正在与多个国际政府和私人组织进行谈判。John 将概述该问题;对人工智能本身进行易于理解的描述;系统的当前性能;并描述迄今为止将其转变为海运业服务的努力。该项目的灵感来自他们的研究,该研究使用类似的人工智能技术在夜空的大图像中搜索天文物体。
光电子化是吸收高光电离的术语是气体或蒸气分子吸收高能光子的术语,该术语通过气体或蒸气分子具有能量光子,该分子具有电离电位较低或近似于光子离子化电位或近似光子能量的电离电位。这导致源提供的能量电离。这导致该分子的电离。如果在该分子的区域应用了电场。如果将电场应用于离子化的分子物种区域,则产生的电流是离子化的分子物种,那么产生的电流与分子在样品环境中成比例的浓度成正比成比例。这为样本环境提供了一种简单的方法;这提供了一种简单的方法,用于定量分析比源/灯的光子能量低的光子磅,对各种气态或蒸气量的各种气态或蒸气分析的电离潜力低。该技术是源/灯的非破坏性能量。该技术是非破坏性的,因此可以与其他检测器一起使用,以便与其他检测器一起使用以扩展分析。扩展分析。PID灯。对于手持式探测器,RF版本为较小尺寸和低功率驱动电路的需求提供了解决方案。在一般DC操作中是固定安装仪器(例如气相色谱仪)的首选选项,其中需要连续监测,并且可以支持高压电源。Excelitas在RF和DC版本中都为标准设计制造了广泛的PID灯。客户也可以从我们的设计专业知识中受益,因为Excelitas技术团队可以与OEM合作设计和制造产品,以达到其特定的维度和性能要求。
萨拉托夫州立大学物理与科学医学中心研究所Precision和控制学院的Valery V. Tuchin博士,俄罗斯萨拉托夫的FRS“ RAS的Saratov Scientific Center”。汤姆斯克大学,汤姆斯克,俄罗斯汤姆斯克州立大学激光分子成像和机器学习实验室
仅供研究使用。不可用于诊断程序。如需了解当前认证,请访问 thermofisher.com/certifications © 2024 Thermo Fisher Scientific Inc. 保留所有权利。除非另有说明,所有商标均为 Thermo Fisher Scientific 及其子公司的财产。DS0511-EN-09-2024
1坦佩雷大学,工程与自然科学学院,邮政信箱589,FI-33014,芬兰坦佩雷2环境资源分析DPT。科学学院。avda。elvas s/n。06071 Badajoz(西班牙)3陶瓷和玻璃研究所。csic。Kelsen 5。 28049马德里(西班牙)。Kelsen 5。28049马德里(西班牙)。