ispace 和小行星采矿公司同意执行未来的月球任务 东京——2024 年 10 月 9 日——全球月球探测公司 ispace, inc. (ispace) (TOKYO: 9348) 和总部位于伦敦的太空机器人公司小行星采矿公司 (AMC) 两家公司今天宣布,已达成协议,将在未来的 ispace 月球表面任务中进行太空机器人演示。 两家公司签署的谅解备忘录提供了一个合作框架,该框架设想了一项未来的任务,其中 ispace 月球着陆器将把 AMC 的太空机器人(太空能力小行星机器人 - 探测器或 SCAR-E)送到月球表面,作为未来小行星采矿工作的技术演示。 在太空中,SCAR-E 可用于小行星和月球的资源探索,能够应对传统轮式探测车目前无法进入的地形,例如陨石坑。 ispace 最早将在 2024 年 12 月之前发射 RESILIENCE 月球着陆器(这是该公司的第二次月球运输任务),该公司同时在美国和日本的业务实体中设计了两个后续系列的月球着陆器。一旦达成任务计划并获得资金,SCAR-E 机器人将在未来的任务中亮相。
迪拜,5 月 30 日(美联社):阿拉伯联合酋长国周一公布了发射一艘宇宙飞船探索太阳系主要小行星带的计划,这是这个石油资源丰富的国家在 2020 年成功向火星发射希望号航天器后的最新太空项目。该项目被称为阿联酋小行星带任务,旨在未来几年开发一艘航天器,然后在 2028 年发射,以研究各种小行星。“这次任务是火星任务的后续行动,它是从该地区首次前往火星的任务,”阿联酋小行星带任务项目主管 Mohsen Al Awadhi 说。“我们通过这次任务创造同样的东西。也就是说,这是有史以来第一次专门探索这七颗小行星的任务,也是从宏伟壮丽的角度看的第一次此类任务。”2021 年 2 月,阿联酋的“希望”号探测器抵达火星,成为第一个阿拉伯国家,也是有史以来第二个首次成功进入火星轨道的国家。该探测器的目标包括提供火星大气及其各层的第一张完整图像,并帮助解答有关火星气候和成分的关键问题。如果成功,这艘新宣布的航天器将以每小时 33,000 公里(20,500 英里)的速度飞行,为期七年,探索六颗小行星。最终,它将在第七颗罕见的“红色”小行星上部署一艘登陆艇,科学家称这可能为了解地球生命的基础提供线索。水等有机化合物是生命的重要组成部分,已在某些小行星上发现,可能是通过与其他富含有机物的天体碰撞或在太空中产生复杂的有机分子而产生的。研究这些化合物的起源,以及红色小行星上可能存在的水,可以揭示地球水的起源,从而为了解地球上生命的起源提供宝贵的见解。这项努力对于 2014 年成立的蓬勃发展的阿联酋航天局来说是一个重要的里程碑,因为它是继成功向火星发射 Amal 探测器(或“希望”号)之后的又一举措。这次新的旅程将比火星任务的距离长十倍以上。该探测器以迪拜统治者谢赫·穆罕默德·本·拉希德·阿勒马克图姆的名字命名,后者还担任世袭统治的阿联酋副总统兼总理。它将首先前往金星,在那里,金星的引力将把它弹回地球,然后到达火星。该飞船最终将到达小行星带,飞行距离小行星带最近处 150 公里(93 英里),总飞行距离为 50 亿公里(约 30 亿英里)。2034 年 10 月,该飞船预计将向第七颗也是最后一颗小行星 Justitia 进行最后一次推进,然后在一年多后部署着陆器。Justitia 被认为是仅有的两颗已知红色小行星之一,其表面可能含有有机物质。“它是小行星带中最红的两个物体之一,科学家们并不真正理解它为什么这么红,”阿联酋航天局的空间科学研究员 Hoor AlMaazmi 说。“有理论认为它最初来自柯伊伯带,那里有更多的红色物体。所以这是我们可以研究的一件事,因为它也有可能富含水。” MBR 探测器将部署一艘登陆艇来研究 Justitia 的表面,该登陆艇将由阿联酋的私人初创公司全面开发。它可能为未来从小行星中提取资源奠定基础,最终支持人类在太空的长期任务 - 甚至可能支持阿联酋到 2117 年在火星建立殖民地的雄心勃勃的目标。
美国宇航局位于佛罗里达州的肯尼迪航天中心的发射服务项目负责火星 2020 毅力号探测器的发射管理。这辆火星车是一辆四轮汽车大小的车辆,一旦探测器于 2021 年 2 月着陆,它将搜寻火星杰泽罗陨石坑的底部,杰泽罗陨石坑深 820 英尺(250 米),据信是一个与太浩湖大小相当的湖泊。据信,该陨石坑拥有大量约 35 亿年前的原始沉积物,科学家希望这些沉积物中能找到火星生命的化石。
摘要 在星载雷达观测海洋的各种挑战中,以下两个问题可能更为突出:动态分辨率不足和垂直穿透效果不佳。未来十年,雷达干涉测量和海洋激光雷达技术可能会取得两项备受期待的突破,预计它们将对亚中尺度分辨和深度分辨的海洋观测做出重大贡献。计划中的“观澜”科学任务包括双频(Ku 和 Ka)干涉测高仪(IA)和近天底指向海洋激光雷达(OL)。星载主动 OL 将确保更深的穿透深度和全时探测,从而对地下海洋的光学特性进行分层表征。OL 和双频(Ku 和 Ka)干涉测高系统的同时运行将使我们更好地了解大气和海气界面的贡献,从而大大减少两个传感器的误差预算。 OL有效载荷有望部分揭示真光层中垂直间隔10米的海洋食物链和生态系统,在动态和生物光学上向海洋混合层迈出重要一步。