与 Benchmark 共同开发的 AccuVein AV300 是世界上第一款手持式静脉观察器。使用 AV500 型号,AccuVein 用户的首次穿刺成功率提高了 350%,患者疼痛减轻了 39%,病情恶化减少了 45%。通过与 AccuVein 团队的密切合作,Benchmark 的综合设计和制造专业知识大大缩短了产品上市时间,使 AccuVein 成为该领域的先行者。Benchmark 在 QSR 和 FDA 合规性方面的可靠资质,包括 ISO 13485 和激光安全认证,使 AccuVein 在从设计到生产的整个过程中都充满信心。通过与 Benchmark 的合作,AccuVein 继续成为手持式静脉观察器技术的全球领导者。
此次任务旨在研究火星的地质环境,寻找可能曾经存在生命、甚至可能仍然支持生命的环境的证据。火星车将配备一套仪器,并配备一个能够钻入地表以下 2 米的钻头。这将使它能够确定生命的证据是否埋藏在地下,免受如今撞击地表的破坏性辐射的影响。
早期的 PXSII 电子设备具有单独的前置放大器板和 ADC/FPGA 板。已在 CHESS、INFUSE、5x 上成功飞行,但体积庞大且很重,对于 50mm 探测器来说功耗为 25w。我们正在实施 Cross Strip 处理电子设备的 ASIC 版本 - GRAPH。这将电荷敏感放大器 (CSA) 和快速 ADC 实现到单个设备中,46mW/通道,对于 50mm XS 来说 ~7.4W = (2.4W + FPGA 功耗),对于 100mm XS 来说 ~15W。它已经制作了原型,正在进行功能测试,即将用于处理 50mm XS 探测器上的 XY 光子事件。
摘要。量子点红外光电探测器(QDIP)定位成为红外(IR)检测领域的重要技术,尤其是对于高温,低成本,高产,高收益检测器阵列所需的军事应用所需的技术。高操作温度(≥150k)光电探测器通过启用低温露水和斯特林冷却系统的成本降低了红外成像系统的成本,并被热电冷却器代替。QDIP非常适合在升高温度下检测中期光,该应用可能被证明是下一个量子点的商业市场。虽然量子点外延的生长和IR辐射的标记内吸收良好,但量子点非均匀性仍然是一个重大挑战。在150 K处的最新IR检测,而QDIP焦平面阵列的性能与77 K的HGCDTE相当可比。带隙工程以减少深色电流并增强多光谱检测(例如共鸣隧道QDIP),QDIP的性能和适用性将继续提高。
35.1简介。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>2 35.2光子检测器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>3 35.1.2 bacuum phototettors。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>4 35.2.2气态光子检测器。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。6 35.2.3固态光子检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。7 35.2.4超导光子检测器。。。。。。。。。。。。。。。。。。。。。。。。8 35.3有机闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 35.3.1闪烁机制。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。9 35.3.2塑料闪烁体的实用性。。。。。。。。。。。。。。。。。。。。。。。。。。11 35.3.3有机玻璃闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.3.4液体闪烁体的实用性。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.4无机闪烁体。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。12 35.5 Cherenkov探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。17 35.6气态探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。22 35.6.1气体中的能量损失和电荷运输。。。。。。。。。。。。。。。。。。。。22 35.6.2多线比例和漂移室。。。。。。。。。。。。。。。。。。27 35.6.3高率效应。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。31 35.6.4微图案气体探测器。。。。。。。。。。。。。。。。。。。。。。。。。。。32 35.6.5时预测室。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。32 35.6.5时预测室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。38 35.6.6过渡辐射探测器(TRD)。。。。。。。。。。。。。。。。。。。。。。42 35.6.7电阻板腔室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。46 35.7 Lar Time投影室。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 35.7.1简介。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。51 35.7.2一批超纯液体氩气。。。。。。。。。。。。。。。。。。。。。。。。52 35.7.3充电和光信号。。。。。。。。。。。。。。。。。。。。。。。。。。。。。53 35.7.4 Lar TPC拓扑。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 55 35.7.5数据采集和事件重建。 。 。 。 。 。 。 。 。 。53 35.7.4 Lar TPC拓扑。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。55 35.7.5数据采集和事件重建。。。。。。。。。。。。。。。。。。。。57 35.7.6发展。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。57 35.8半导体检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。58 35.8.1半导体中的信号产生。。。。。。。。。。。。。。。。。。。。。。。59 35.8.2结孔检测器。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。61 35.8.3带有结构化电极的检测器。。。。。。。。。。。。。。。。。。。。。。。63 35.8.4硅检测器的精确时机。。。。。。。。。。。。。。。。。。。。。。。66 35.8.5硅检测器中的辐射损伤。。。。。。。。。。。。。。。。。。。。。。68 35.9低噪声检测器读数。。。。。。。。。。。。。。。。。。。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>71 35.9.1主噪声起源。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>72 35.9.2等效噪声分析。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>72 35.9.3时序措施。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>。 div>77 35.9.9.4数字信号处理。 div>。 div>。 div>。 div>。 div>。 div>。 div>。。。。。。。。。。。。。。。。。。。。。。。78 35.9.5什么时候使用什么?。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 35.10量热计。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79 35.10.1引言。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。。79
•壁挂式探测器必须位于天花板(或制造商安装说明中规定)的区域不超过12英寸,而不少于4”的区域。•天花板安装的探测器应距离拱形天花板的侧壁或峰值不超过4英寸(或制造商的安装说明中的规定)。•探测器应远离窗户和外门。•探测器应安装在内壁上。•烟雾探测器不得在从门到厨房或装有淋浴或浴缸的浴室的36英寸水平路径中安装。•烟雾探测器不得在强迫空气加热或冷却系统的电源登记处安装在36英寸的水平路径中,并且不得安装在这些寄存器的直接气流外。•烟雾探测器不得从天花板悬架(桨)风扇的刀片尖端的36英寸水平路径内安装。电池应每年更换一次。记住更换电池的一种方法是,当您将时钟设置为前方或返回时,以节省日光。大多数烟雾探测器在电池低时会发出呼气。最好按测试按钮并定期手动检查它们。烟雾探测器的预期寿命约为10年,即使在测试时听起来也是如此。制造日期应在检测器的背面指示。如果没有明显的日期,则应假定检测器超出了预期寿命,应更换。**一个单独的住宅单元应在上面指定的位置配备烟雾探测器:
摘要:被动微波探测器对于来自数值天气预测模型的准确预测至关重要。使用传统的两点方法对这些传感器进行校准,其中一个来源通常是一个自由空间的黑体目标,第二个来源是宇宙微波背景的清晰视图,通常称为“冷空间。”有时,这些校准源中的一个或两个都会因在冷空间视图中的太阳能/月球入侵而损坏。目前针对风暴和热带系统(Tempest)微波仪器仪器进行的时间实验,目前已在国际空间站(ISS)进行3年任务。Tempest还使用黑体目标和冷空间校准;但是,ISS上存在的物体通常会妨碍冷空空间视图。在这里,我们测试了仅使用黑体校准目标的替代单点校准方法。我们发现这种新方法与传统的两点校准方法之间的亮度温度差为0.1 k,当应用于2018年至2020年的Tempest Cubesat演示(Tempest-D)任务数据的3年。这种方法适用于其他微波辐射仪,这些微波辐射仪偶尔会降解校准源,例如热效应,侵入或噪声二极管的不稳定性。
无辜平民,尤其是儿童,成为地雷的受害者。正如在加拿大首都渥太华通过的《禁止杀伤人员地雷公约》序言中所述,地雷在埋设多年后,阻碍了经济发展、重建和难民遣返。共有 164 个国家批准了该公约,并销毁了 5300 万枚储存的地雷。但它们造成的危险至今仍然存在。VALLON 探测器凭借其极高的探测灵敏度,为世界安全做出了贡献。
7KH HDV\ WR XVH IDVW QHXWURQ GHWHFWRU DOORZV IRU D EHWWHU XQGHUVWDQGLQJ RI WKH QHXWURQ ĻX[ LQ D JLYHQ H[SHULPHQWDO DUHD $ WXQDEOH DQG VHWWDEOH HQHUJ\ WKUHVKROG DOORZV WR FRQFHQWUDWH RQ WKH QHXWURQ HQHUJLHV RI LQWHUHVW 7KH GHWHFWRU GHOLYHUV D VWDQGDUG 77/ RXWSXW IRU HDFK GHWHFWHG QHXWURQ PDNLQJ LW HDVLO\ FRPSDWLEOH ZLWK RWKHU GHWHFWLRQ V\VWHPV DQG VXLWDEOH IRU GURS LQ UHSODFHPHQWV 7KH 5XJJHG E\ 'HVLJQ 70 IDPLO\ RI QHXWURQ GHWHFWRUV XVHV D 6L30 EDVHG VLJQDO UHDGRXW PDNLQJ LW LPPXQH WR VKRFN DQG YLEUDWLRQ DQG VFDODEOH LQ OHQJWK 7KH GHWHFWRUV DUH DYDLODEOH LQ WZR VWDQGDUG OHQJWKV RU FXVWRP EXLOW WR XVHU VSHFLĺFDWLRQV