新型威胁难以探测和跟踪,尤其是那些具有隐身特性、高超音速、低空运动、小型高机动以及使用饱和攻击战术的威胁。面对此类威胁,现有监视雷达系统在探测范围、角域覆盖、跟踪和识别能力方面已达到极限。因此,本主题的目标是通过实现先进的高性能和高度集成的多功能系统来完善所需的技术和概念,以满足态势感知的需求,该系统可通过开发有源电子扫描阵列 (AESA) 天线来实现,该系统可在可行和有利的情况下支持雷达、电子战 (EW) 和可能的通信功能。
在防抱死制动系统 (ABS) 和安全带预紧器的基础上,本田被公认为首个商业化应用自动紧急制动 (AEB) 的厂商。2003 年,本田在日本市场的 Inspire 上推出了碰撞缓解制动系统,该系统使用前置雷达探测潜在低速碰撞,探测范围可达 100 米 (328 英尺) [4]。包括梅赛德斯-奔驰在内的一些原始设备制造商 (OEM) 也在大约同一时间推出了类似的系统;不过,该系统仅限于高档车,而且最常见的是作为选配提供。在接下来的十年里,AEB 从一项高档功能转变为各种车型中更广泛可用的选配,一些 OEM 开始将产品范围标准化。
第 2 章 相关理论 2 红外传感器 (IR) 2 直流电机 3 电机驱动器 (Driver Motor L298N) 5 微控制器板 (Arduino Mega 2560) 8 LCD 显示屏 9 12V 5A 直流电源 10 跳线 11 小型直流电源适配器 13 螺旋桨 14 USB 电缆 14 第 3 章 操作方法 16 操作方法 16 控制程序 19 操作计划 24 材料和设备 25 操作步骤 27 第 4 章 实验结果 29 红外传感器可探测范围 29 系统运行测试步骤 29 第 5 章 结论、问题和建议 30 结论 30 问题与建议 30 附录 31参考书目 33
随着减振降噪、消声瓦、消磁等相关技术的不断发展和完善,现代潜艇的探测难度越来越大。声呐浮标空投具有投放速度快、覆盖范围广、搜潜效率高、不易被水下潜艇探测和攻击等特点,是目前对抗反潜探测的最佳手段之一。因此,部署反潜直升机和空投声呐浮标已成为现代水面舰艇扩大反潜探测范围、提高反潜作战能力的有效手段。但反潜直升机作为主要的声呐浮标投放系统,对舰载储物空间和相关维护保障有严格的要求,中小型水面舰艇不具备搭载此类直升机的条件
在海军中,无线电探测和测距系统(雷达)是探测、跟踪和有时区分友军和敌军目标的主要传感器。它们对于创建周围环境的作战图像和态势感知至关重要。雷达的性能会显著受到系统部署环境的影响。在某些大气条件下,折射效应会导致电磁管道、雷达漏洞、跳过区和/或阴影区增大。这些现象既有战术上的优势,也有劣势。例如,优势在于管道可以扩大探测范围,从而提供更多的反应时间来对抗来袭的敌军目标。劣势在于敌军目标可能无法在通常与发达管道共存的雷达漏洞和跳过区中被发现。
在海军中,无线电探测和测距系统(雷达)是探测、跟踪和有时区分友军和敌军目标的主要传感器。它们对于创建周围环境的作战图像和态势感知至关重要。雷达的性能会显著受到系统部署环境的影响。在某些大气条件下,折射效应会导致电磁管道、雷达漏洞、跳过区和/或阴影区增大。这些现象既有战术上的优势,也有劣势。例如,优势在于管道可以扩大探测范围,从而提供更多的反应时间来对抗来袭的敌军目标。劣势在于敌军目标可能无法在通常与发达管道共存的雷达漏洞和跳过区中被发现。
在海军中,无线电探测和测距系统(雷达)是探测、跟踪和有时区分友军和敌军目标的主要传感器。它们对于创建周围环境的作战图像和态势感知至关重要。雷达的性能会显著受到系统部署环境的影响。在某些大气条件下,折射效应会导致电磁管道、雷达漏洞、跳过区和/或阴影区增大。这些现象既有战术上的优势,也有劣势。例如,优势在于管道可以扩大探测范围,从而提供更多的反应时间来对抗来袭的敌军目标。劣势在于敌军目标可能无法在通常与发达管道共存的雷达漏洞和跳过区中被发现。
海军定期在训练演习中对海洋哺乳动物的分布和发生情况进行研究,以更好地监测海洋哺乳动物与海军活动之间的潜在相互作用。这些研究使用的方法包括视觉调查和通过被动声学记录器进行声学监测;然而,这些方法有明显的缺点。从船舶和飞机上进行视觉调查成本高昂,而且不能在夜间或大风、波涛汹涌的海面或能见度低的时候进行。虽然被动声学记录器的探测范围很大,可以用于在任何天气条件下持续探测发声的海洋哺乳动物,但只有在收回记录仪器后才能访问记录。此外,由受过培训的人员进行声学分析既费时又费钱。
1.提议研究的标题:防区外反潜战 (ASW) 效应器 2.提议研究的简要说明:本研究将研究在距离军舰 5 海里以外的地方实施防区外 ASW(即从“检测”到“攻击”的全过程)的解决方案。3.背景:ASW 是北约国防规划的重点。潜艇发射的重型鱼雷的射程正在增加,而威胁潜艇的声学特征正在减少。然而,多静态和低频主动声纳的出现意味着在远距离探测和攻击潜艇越来越可行,尤其是在但不限于蓝水环境中。这些探测范围与舰载轻型鱼雷 (LWT) 有效交战范围之间的差距很大,可能会导致对机载 ASW 单位的依赖。这些(有机)单位受到天气条件的限制,并非总是可用。这可能导致 ASW 效率降低。需要一个解决方案来实现北约重返高端作战的雄心。4.研究目标:
和拖曳阵列声纳 (TAS) 或尾随阵列声纳。主要区别在于搜索威胁的方式;使用 DpS 时必须执行机动以前进、在某点停止、浸没声纳、进行搜索并在前进之前再次升起声纳,而使用 TAS 时可以从在定义的深度发射声纳的第一刻开始搜索,这意味着连续搜索,见图 3。在该图的左侧可以看到不同的未填充圆盘,USV 必须将 DpS 浸没在这些圆盘中。每个圆圈代表声纳可以实现的探测范围;填充区域代表执行的扫描。另一方面,该图的右侧显示连续的细线,代表 USV 未扩展的轨迹,而填充区域显示已经使用 TAS 声纳进行连续扫描的区域。仅在轨迹的最后一个探索点才能检测到威胁。