我们引入了数据探测器,这是一种以技术为中介的探测器,旨在揭示联网设备的一些内部工作原理,包括常见的嵌入式传感器及其收集的数据。通过使这些常见功能既易于理解又不为人所熟悉,探测器支持研究参与者从不同的角度看待这些技术,并反思可能被商业产品设计所掩盖的功能和行为。在一项研究中,参与者带着探测器生活和旅行了一个月,我们能够获得生成性设计洞察,了解人们对联网设备的态度和与联网设备的关系,为采用替代方法设计目前根深蒂固的物联网愿景提供新的机会。我们提出这项探索性研究,以说明技术介导的探测器如何促使他们对技术进行反思并开辟新的设计空间。
数据保护信息: 1. 自愿同意 a) 我自愿提供我的数据。我没有法律或合同义务披露我的数据。 b) 关于不同意的后果:不同意将导致无法参加活动。 2. 撤销的可能性 我有权随时撤销已给予的同意,且撤销后该同意将立即生效。撤销之前处理的合法性不受影响。 3. 进一步处理 a) 上述处理目的的法律依据是根据 GDPR 第 6 条第 1a 款、第 7 条获得的同意 b) 数据将在上述事件发生后最多保存三个月 c) 数据将根据 BKAG 第 5、10、14 和 25 条传输给 BKA 或根据相关州警察法律传输给负责的 LKA,以检查与安全相关的问题。 d) 没有自动化决策。 e) 数据将按以下方式处理*:存储在 EXCEL 表中,一旦不再需要就删除数据。 4. 数据保护的负责人是:联邦国防部,Stauffenbergstrasse 18, 10785 Berlin 5. BMVg 业务领域的数据保护官是:德国联邦国防军官方数据保护官 BMVg R II 4 Fontainengraben 150 53123 Bonn 6. 除了上述随时撤销的权利之外,作为数据主体,我对负责人拥有以下权利: - 关于我的数据的信息(根据欧盟 GDPR 第 15 条), - 更正权利(根据欧盟 GDPR 第 16 条), - 删除权利(根据欧盟 GDPR 第 17 条), - 限制处理的权利(根据欧盟 GDPR 第 18 条), - 反对处理的权利(根据欧盟 GDPR 第 21 条)。 7. 我有权向数据保护和信息自由专员提出投诉(根据欧盟 GDPR 第 77 条)。
4 天前 — 零件编号或规格。 TRUSCO。 THP-20-511SC-D。 或同等产品。 设备名称。 数量... 来自国防部部长官房卫生官、国防政策局局长、采购、技术和后勤局局长或陆上自卫队参谋长...
复制本出版物可以在未经版权持有人的特殊许可的情况下全部或部分以及任何形式复制,并以任何形式出于教育或非营利性目的复制。unep会感谢收到任何使用本出版物作为来源的出版物的副本。未经UNEP书面许可,不得将本出版物用于转售或任何其他商业目的。申请申请以及繁殖目的的申请,应介绍给工业和经济部,可持续移动部门,UNEP P.O.Box 30552,内罗毕00100,肯尼亚,UNEP-经济性mobility-mobility@un.org。不允许从本出版物中使用有关礼节产品进行宣传或广告的信息。
整合人工智能(AI),物联网(IoT)和机器学习(ML)技术纳入燃料电池系统,为各个部门提供了许多好处,应用和机会。本章探讨了燃料电池整合中AI,IoT和ML的协同潜力,概述了它们的优势,应用,挑战和潜在的解决方案。通过利用AI进行预处理维护,通过IoT传感器优化操作条件,并采用ML算法来提高效率,燃料电池系统可以实现更高的性能和可靠性。现实世界中的案例研究和示例表明,在运输,能源生产和制造等领域的成功整合。此外,本章讨论了未来的前景,包括数据分析,系统优化和可伸缩性方面的进步,以及与AI,IoT和ML一起推动燃料电池技术集成的创新。
在运输领域,电池和插电式混合动力汽车被全球采用,以减轻二氧化碳排放的方法。与此相一致,全球许多国家和政策机构提出了车辆排放目标,并在不久的将来采用和使用电动汽车的目标。需要对运输的广泛电气化,PV产生的电力和其他可再生能源,以利用EV的采用量为更重要的CO2降低。PV发电的分布性质为电池电动汽车充电提供了新的机会。电动汽车低碳充电的选项包括从现有的电网网络充电使用PV或其他可持续电源,从当地PV发电的专用充电点充电,或直接和独立地使用车载PV(PV供电车辆)。为了促进减少运输部门的二氧化碳排放并增强PV市场的扩展,IEA PVPS任务17的目的是阐明PV利用在运输中的潜力,并建议如何实现这些概念。任务17的范围包括各种PV驱动的车辆,例如乘用车,轻型商用车,重型车辆和其他车辆,以及用于电气系统和基础设施的PV应用,例如使用PV,电池和其他电力管理系统充电基础设施。在这些选项中,本报告专注于PV供电的车辆,并具有载板集成的PV Systems(VIPV)。这是本报告的主题。可以将VIPV系统描述为PV表面之间的组合,该组合集成在汽车主体,特定的电子系统和板上能源管理系统(EMS)之间,该系统与PV Energy的存储元件有关。在大多数情况下,PV元件的主要特征是标准辐照度(1000 W/m²,AM1.5 @25°C)下的峰值功率(WP)。这是预测我们每年可以从太阳获得和使用的太阳能的关键参数。由于PV表面不是平坦的,而是在汽车太阳能屋顶上弯曲,因此不匹配以辐照度和细胞温度为单位。它由于模块表面上的光入角度不均匀而导致能量损失。
1 )交互性与安全性的矛盾问题。在当前智能座 舱所处的发展阶段,新型人车交互方式的安全性尚需 要进一步检验,繁复的人机交互会对驾驶人造成分神 影响甚至带来安全隐患;在未来智能座舱发展的第三 阶段,还将面临着人车交互的信任问题。解决该问题 是智能座舱实现实质性发展的关键。 2 )舱内交互与舱外交互的协同问题。智能座舱 作为移动生活智慧终端的“第三空间”,其交互范畴 需全面覆盖汽车舱内及舱外的立体化时空场景,不仅 需要解决舱内的人机交互问题,也要解决舱外的人机 交互问题,以及舱内舱外人机交互的协同问题。现有 研究已部分解答了该问题,但仍需结合真实应用场景 继续深入研究。 3 )智能座舱与其他智慧生活形态的连接问题。 汽车智能座舱是智慧城市的重要组成部分,其交互设 计不是孤立的,需有机对接到整个智慧城市的系统 中。目前,对该问题的研究关注还比较少,有较大的 研究空间。 4 )智能交互的应用实现问题。虽然智能交互的 部分关键技术已实现了突破,但离普遍应用还较远。 其根本原因在于交互技术的发展还不够充分,主要体 现在信息感知、信息传输、信息处理等三个方面,具 体为传感探测仪器的精度不足、高速物联通信基础设 施建设不足、芯片及软件产品的算力不足。这些问题 的解决将决定智能座舱交互设计的发展速度。 综合以上研究现状与问题分析,汽车智能座舱交 互设计的发展趋势总结如下: 1 )交互模态多元化、复合化。基于视觉、听觉、 触觉等多感官通道的立体融合式交互模态将成为主 流,结合更加深入的效率、安全、信任等人机交互研 究,将逐渐发展成为全面的智能交互体系。 2 )交互方式人性化、情感化。虽然交互模态日 益多元化,但座舱人机交互的方式将变得越来越简 单,汽车将自发迎合人的自然交互习惯,让驾驶员以 更少的注意力完成更多的人机交互,从而找到智能座 舱交互性与安全性的平衡点。同时座舱人机交互将更 注重对人的情感需求的感知与响应,成为情感化的智 能伙伴。 3 )交互设计场景化。智能座舱的交互设计将结 合更多的场景催生更丰富的交互方案,不仅从车内场 景扩展到车外场景,也会由单一场景扩展到复合场 景,甚至扩展到智慧生活的任意场景中,并实现交互 模式的订制化,使汽车智能座舱真正成为未来智慧生 活空间的一部分。 4 )交互相关技术日益成熟。在国家政策的持续 引导与驱动下,硬件技术、软件技术、物联通信基础 设施等都将迎来持续的建设、发展与完善,为智能座 舱交互设计的全面发展提供技术基础。