摘要 观测记录往往受到残余非气候因素的影响,必须在使用前检测并调整这些因素。在本研究中,我们提出了一种名为无线电探空协调 (RHARM) 的新方法,该方法提供了温度、湿度和风廓线的均质数据集以及对全球 697 个无线电探空站的测量不确定性的估计。从 1978 年至今,RHARM 方法已用于每天两次(0000 和 1200 UTC)调整 1,000-10 hPa 范围内 16 个气压水平的无线电探空仪数据,这些数据由综合全球无线电探空仪档案提供。相对湿度 (RH) 数据限制为 250 hPa。应用的调整被插值到所有报告的级别。RHARM 是第一个提供均质时间序列的数据集,该数据集估计了每个探空压力水平的观测不确定性。从构造上讲,RHARM 调整后的字段不受站点间偏差交叉污染的影响,并且完全独立于再分析数据。对温度、RH 和风的趋势分析突出了 1978-2000 年全球趋势的地理一致性增强,尤其是在北半球和南美洲。RHARM 显示北半球 300 hPa 的变暖趋势为 0.39 K/十年,热带地区的变暖趋势为 0.25 K/十年。RHARM 调整还减少了与欧洲中期天气预报中心 ERA5 再分析的差异,其中北半球的温度和相对湿度影响最大。对于风速,比较表明与对流层的 ERA5 高度一致。
为了将以前未开发的电磁波谱部分用于丰富的复杂新服务(通信),需要在对流层中测量无线电折射率的微小变化。关于地球大气边界层(与大陆和海洋直接热接触和摩擦接触的空气)无线电折射率精细结构的高分辨率信息可用于许多应用,例如航天器跟踪、卫星导航、无线电干涉测量、遥感等。最新的发展使得我们能够通过现场和遥感技术在所有重要的空间和时间尺度上研究大气的这一区域。由于传统气象系统(如无线电探空仪、投投探空仪等)的内在缺陷,无线电折射率的大多数急剧梯度都被消除了。机载微波折射仪是一种非常精密的仪器,可以近乎实时地提供无线电折射率的精细结构信息数据。它的垂直高度分辨率约为一米或更低。它是唯一适合获取亚折射和超折射以及管道发生统计数据的仪器,可用于无线电和雷达操作的实时评估。该折射仪有助于了解热带边界层的微物理特性以及设计厘米波和毫米波无线电系统。该地区的物理特性是非平稳的,因为该地区的特点是存在温度和湿度逆变,这会导致无线电折射率以层的形式出现严重的不均匀性。这种高分辨率无线电气候信息在印度几乎不存在。为了收集此类信息,本文作者开发了一种机载微波折射仪(Sarma 等人,1975 年),并在后来几年考虑到工程和航空电子方面改进了设计,并于 1983 年、1985 年和 1988 年进行了飞行测试。
摘要 观测记录往往受到残余非气候因素的影响,必须在使用前检测并调整这些因素。在本研究中,我们提出了一种名为无线电探空协调 (RHARM) 的新方法,该方法提供了温度、湿度和风廓线的均质数据集以及对全球 697 个无线电探空站的测量不确定性的估计。从 1978 年至今,RHARM 方法已用于每天两次(0000 和 1200 UTC)调整 1,000-10 hPa 范围内 16 个气压水平的无线电探空仪数据,这些数据由综合全球无线电探空仪档案提供。相对湿度 (RH) 数据限制为 250 hPa。应用的调整被插值到所有报告的级别。RHARM 是第一个提供均质时间序列的数据集,该数据集估计了每个探空压力水平的观测不确定性。从构造上讲,RHARM 调整后的字段不受站点间偏差交叉污染的影响,并且完全独立于再分析数据。对温度、RH 和风的趋势分析突出了 1978-2000 年全球趋势的地理一致性增强,尤其是在北半球和南美洲。RHARM 显示北半球 300 hPa 的变暖趋势为 0.39 K/十年,热带地区的变暖趋势为 0.25 K/十年。RHARM 调整还减少了与欧洲中期天气预报中心 ERA5 再分析的差异,其中北半球的温度和相对湿度影响最大。对于风速,比较表明与对流层的 ERA5 高度一致。
如今,无人机 (UAV) 的飞行距离越来越长,任务时间也显著延长。这要求无人机不仅要有长续航能力,还要有远程能力。受鸟类和海洋动物运动模式的启发,它们表现出动力-滑行-动力周期性运动行为,因此提出了一个最优控制问题来研究无人机轨迹规划。微分平坦度的概念用于将最优控制问题重新表述为非线性规划问题,其中平坦输出使用傅里叶级数参数化。P 检验还用于验证是否存在优于稳态运动的周期解。以航空探空仪无人机为例,说明周期性控制方案相对于平衡飞行在续航时间和航程成本方面的改进。[DOI: 10.1115/1.4043114]
基于对流大气边界层的大涡模拟 (LES) 的先验分析,提出了改进的湍流混合和耗散长度尺度,用于基于湍流动能 (TKE) 的行星边界层 (PBL) 方案。湍流混合长度结合了表面层中的表面相似性和 TKE 约束,并对混合层中的横向夹带效应进行了调整。耗散长度是根据考虑剪切、浮力和湍流混合的平衡 TKE 预算构建的。在 TKE 通量中添加了一个非梯度项,以校正 TKE 的非局部湍流混合。改进的长度尺度被应用于 PBL 方案,并使用理想的单柱对流边界层 (CBL) 情况进行了测试。结果在广泛的 CBL 稳定范围内表现出强大的适用性,并且与 LES 基准模拟非常一致。然后将其实施到社区大气模型中,并通过 3D 真实情况模拟进行进一步评估。新方案的结果与其他三种成熟的 PBL 方案的质量相当。模拟和无线电探空仪观测剖面之间的比较表明,新方案在晴朗的日子里表现良好。
已经开发了一种移动专业填充系统,能够探测从表面到30公里以上的大气。移动专业填充系统(MPS)结合了地面仪器,包括五个梁924-MHz雷达风能填充器,无线电声音系统和两个被动微波探空仪,以及用于气象学卫星数据的接收器和处理器。通过将基于地面传感器套件与气象卫星套件产生的表面数据和利润结合在一起,从而从表面到最高的卫星发声水平产生了备件。算法会产生温度,湿度,风速和其他气象变量的声音。将来自单独源数据的数据组合的方法不是特定的站点,也不需要先验信息。国会议员具有各种应用的潜力,包括对中尺度地区研究和运营的气象变量的详细分析,例如区域污染研究和严重的风暴预测。本文介绍了合并卫星和基于地面遥感系统数据的方法,并从单个传感器和组合声音的一系列测试中提出了结果。组合声音的准确性似乎与Rawinsonde相吻合,除了卫星发声高度的风速外。国会议员在几个不同的气候中成功运作:在加利福尼亚州克莱蒙特的洛杉矶自由激进实验中,以及在新墨西哥州的White Sands导弹范围进行的测试;科罗拉多州伊利;英尺西尔,俄克拉荷马州;和弗吉尼亚州的沃洛普岛。
截至 96 财年末,先进机载垂直大气剖面系统 (AVAPS)/GPS 投掷探空系统的开发已接近完成。这项工作得到了 NOAA 和德国航空航天中心 (DLR) 的支持。AVAPS 现已取得进展,所有 NOAA 数据系统(两个四通道系统和 NOAA G-IV 飞机的备件以及两个四通道系统和 NOAA P-3 飞机的备件)均已交付,并且已完成初始飞行测试。高空(45,000 英尺高度)和低空(22,000 英尺高度)投掷测试均已完成,包括从 G-IV 和 P-3 投掷探空仪的比对测试。 G-IV 上的 AVAPS 系统和安装在租赁的 Lear 36 飞机上的第二个系统获取的数据预计将在计划于 1997 年初进行的锋面和大西洋风暴轨迹实验 (FASTEX) 中发挥关键作用。DLR 四通道 AVAPS 系统目前正在建造中,并将于 1997 年 3 月安装在 DLR Falcon 飞机上。NCAR 已将该技术转让给公共部门,授权一家商业公司 (Vaisala, Inc.) 建造未来的 GPS 探空仪和数据系统。这项工作由 Hal Cole 和 Terry Hock 领导。
一种通过卫星和无线电探空仪的垂直探测预报恶劣天气的统计技术。David L. Keller 和 William L. Smith,1983 年 6 月 (PB84 114099) 北半球积雪的空间和时间分布。Burt J. Morse 和 Chester F. Ropelewski (NWS),1983 年 10 月。(PB84 118348) 使用 NOAA 系列卫星进行火灾探测。Michael Matson、Stanley R. Schneider、Billie Aldridge 和 Barry Satchwell (NWS),1984 年 1 月。(PB84 176890) 使用卫星多通道海面温度图监测 1981-83 年东赤道太平洋的长波。 Richard Legeckis 和 William Pichel,1984 年 4 月。(PB84 190487)NESDIS-SEL Lear 飞机仪表和数据记录系统。Gilbert R. Smith、Kenneth 0. Hayes、JohnS. Knoll 和 RobertS. Koyanagi,1984 年 6 月。(PB84 219674)均匀地球和云表面反射模式图集(NIMBUS-7 ERB--61 天)。V. R. Taylor 和 L. L. Stowe,1984 年 7 月。(PB85 12440)使用卫星数据分析热带气旋强度。Vern F. Dvorak。1984 年 9 月。(PB85 112951)利用 NASA 空间站计划的极地平台进行地球观测。 John H. McElroy 和 Stanley R. Schneider,1984 年 9 月。(PB85 1525027 I AS)NOAA N-ROSS/ERS-1 环境数据开发活动摘要和分析。John W. Sherman III,1985 年 2 月。(PB85 222743/A3)NESDIS 14 NOAA N-ROSS/ERS-1 环境数据开发 (NNEEDD) 活动。John W. Sherman III,
图 2-1 哈祖斯飓风模型方法示意图..................................................................................................................... 2-3 图 2-2 哈祖斯飓风分析层次..................................................................................................................................... 2-6 图 4-1 平均风廓线......................................................................................................................................................... 4-4 图 4-2 所有 MBL 情况下 RMW 附近的水滴的平均和拟合对数廓线............................................................. 4-6 图 4-3 RMW 附近 10 米处海面阻力系数随平均风速的变化............................................................. 4-7 图 4-4 RMW 外情况的平均风廓线和拟合对数廓线............................................................................................. 4-8 图 4-5 RMW 外情况 10 米处海面阻力系数随平均风速的变化......................................................................... 4-9 图 4-6 10 – 30公里和 30 – 60 公里 RMW 情况..................................................................................................................................................... 4-10 图 4-7 回归模型、Kepert(2001)模型与观测到的边界层高度的比较......................................................................................................................... 4-13 图 4-8 10 至 30 公里和 30 至 60 公里 RMW 情况下 RMW 附近观测到的和建模的速度剖面......................................................................................................... 4-14 图 4-9 在 RMW 附近采集的投掷探空仪数据的建模风速与高度的平均误差......................................................................................... 4-14 图 4-10 RMW 附近 10 米处平均风速与边界层顶部平均风速的建模与观测比值比较......................................................................................................................... 4-16 图 4-11 投掷探空仪数据的建模风速与高度的平均误差在 RMW 区域外拍摄的照片 ............................................................................................................................................. 4-16 图 4-12 完全过渡的陆地平均风速(z 0 =0.03 米)与水面平均风速(z 0 =0.0013 米)与边界层高度的比值 ............................................................................. 4-18 图 4-13 ESDU 和修改后的 ESDU 风速过渡函数 ............................................................................................. 4-18 图 4-14 使用平板模型计算的朝向页面顶部移动的飓风的喷射强度 ............................................................................................................................................. 4-20 图 4-15 显示模拟和观测到的风速、表面气压和风向的示例图......................................................................................................................................... 4-22 图 4-16 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-23 图 4-17 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-24 图 4-18 显示模拟和观测到的风速、表面气压和风向的示例图(续)......................................................................................................................................... 4-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(结束)......................................................................................................................... 4-26 图 4-20 比较图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大地面峰值阵风风速示例比较 ............................................................................................................. 4-29 图 4-22 已消除的剖面示例 ......................................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例 ......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-374-25 图 4-19 显示模拟和观测到的风速、表面气压和风向的示例图(完结)......................................................................................................................................... 4-26 图 4-20 15 个登陆飓风的模拟和观测到的最大峰值阵风风速比较......................................................................................................... 4-28 图 4-21 美国登陆飓风在开阔地形中模拟和预测的最大表面峰值阵风风速的示例比较............................................................................. 4-29 图 4-22 已消除剖面的示例......................................................................................................................... 4-36 图 4-23 穿越给定飓风的表面气压剖面示例......................................................................................................... 4-37
目标主要目标是: - 提供有关大气音的遥感系统的一般背景 - 审查波浪互动,并提供有关大气辐射转移的背景 - 解释一种从遥感观察中提取大气概况信息的一般方法 - 审查遥感的应用 - 查看最重要的应用应用,最重要的应用是大气的声音(包括气象学和气候) - 使用数据处理 - 以数据处理的方式 - 二重奏技术(二重率)(二重奏)(二重率)(二重奏)(二重奏)(二重率)描述符:知识,理解,解释,技能,能力)在成功完成本课程后,学生应该: - 能够描述大气发声的主要原理和应用。- 了解用于大气发声的主要技术和技术。- 了解大气发声的正向和反向方法的基本。- 了解数据处理步骤和产品级别。- 管理数据档案和处理技术,以提取大气发声信息。- 能够构想简单但独立的解决方案,以进行大气发声。大气发出的程序内容原理。大气的组成,热力学和垂直结构。气体,气溶胶和水通路。原位测量。在天气预测,气候研究,组成监测,大气过程研究中的大气发音需求。大气发出的前进和反问题。电磁辐射的基本面。波 - 伴侣的相互作用机制。正向模型。辐射转移理论。发射,吸收和散射气氛。解决地面和太空遥感平台的解决方案。转发和反问题。逆方法。解决问题的解决方案。估计方法。大气发声传感器。地球观测系统基础知识。平台和轨道。微波炉和红外辐射仪。无线电掩盖和肢体响起。审查主要的遥感平台和大气探空仪。大气发声应用。气象:数据同化,天气预测的验证,天气危害。气候研究:监测基本气候变量,气候模型参数化的完善。组成监测:空气污染,绿色房屋强迫。大气过程研究:气溶胶 - 云 - 沉积相互作用。数据处理。从地面和太空式仪器中处理真实观察。大数据门户。数据处理级别。质量控制和数据分析。简单检索算法的设计和开发(回归,最佳估计)。参考文献和材料 - 教师提供的文本和幻灯片-Elachi,Van Zyl,遥感的物理和技术简介。Wiley(第二版),2006年。- Rodgers,大气发声的逆方法,世界科学,2000。- Solimini,了解地球观察。Springer,2016年。