我很自豪能够担任 JALLC 的指挥官,您可以在第 21 页的采访中详细了解我的期望和计划。我们也有关于 JALLC 近期活动的有趣文章。其中包括一篇关于我们的外联和参与团队与数据分析团队合作开展的开创性工作的文章,以确保经验教训数据能够在整个北约得到适当利用。我们总结了 JALLC 最近的一些分析报告,这些报告涉及坚定支持任务和常备海军部队等主题,以及 JALL-C 最近关于北约应对乌克兰及其周边局势的经验教训的工作,正如下页盟军最高司令转型所提到的。我们有一篇来自 JALLC 现任实习生关于最近马德里峰会的有趣观点文章;这是一个听取我们未来潜在领导人对当前局势看法的好机会。
Stem 的 Athena ®️ 智能能源软件运营着世界上最大的能源存储网络,并且在公用事业账单优化和需求响应计划参与方面拥有所有商业存储软件中最丰富的经验,确保您从能源决策中获得最大的价值。Athena Explorer TM 是 Athena 生态系统中的实时数字应用程序,它为我们的客户提供了一个了解其能源资源所提供的价值的窗口,帮助为长期能源战略提供决策支持,以实现弹性、太阳能加存储和可持续发展目标。该应用程序提供节省和系统性能的实时可视化。它还为设施经理、可持续发展领导者、资产所有者和其他最终用户提供了对性能历史视图的访问,以支持能源支出、决策过程以及进一步履行他们的环境、社会和治理承诺。
自动协议优化可实现简单、自动化的屏气成像工作流程。技术人员无需进行繁琐的参数调整,只需在 MR 系统自动计算的协议参数中进行选择,即可优化扫描时间和图像质量。自动协议优化可实现屏气检查,无论患者情况(屏气能力和身体特征)或操作员技能水平如何,图像质量更可靠,检查持续时间更可预测。
电子微探针成像和定量成分映射:73002连续芯的抛光薄片(PTS)分布成50×25 mm的雷果石环氧粒粒度。使用JSC的键性光学显微镜系统获得这些PT的镶嵌光学图像图。随后使用华盛顿大学的JEOL JXA-8200电子微探针(EPMA)对PT进行映射。在15 kV和2 Na探头电流以70×放大倍率以15 kV和2 Na探头电流获取,并使用ImageJ Fiji fiji Grid缝线插件[3]缝合,以5K BSE MOSAIC基本映射与〜1.5 rigy 〜1.5Mpixel分辨率生成20K,并在70次倍率上获取了大约325张梁杆反向散射的电子(BSE)图像。对于每张73002载玻片,使用固定波长 - 启示光谱仪(WDS)获取五个EPMA阶段图。使用固定的10°M电子束在15 kV下,使用9.5 m电子束在1024×1024分辨率下进行每个阶段地图,并使用停留时间为25毫秒。在Pass 1中使用两次通过,以收集Mg,Al,Fe,Ca和Ti的X射线强度,而Na,Si,Mn,Mn,K和Cr在Pass 2中,总收购时间为18小时。每张地图。每张地图。
虽然丘脑底核中β频带振荡同步的过度爆发与帕金森病的运动障碍有关,但一直缺乏将这两种现象联系起来的合理机制。在这里,我们检验了以下假设:β爆发所表示的同步增加可能会损害基底神经节网络中的信息编码能力。为此,我们记录了18名帕金森病患者在执行提示的上肢和下肢运动时丘脑底核中的局部场电位活动。我们使用每次试验中基于局部场电位对要移动的肢体进行分类的准确性作为系统所掌握的有关预期动作的信息的指标。使用朴素贝叶斯条件概率模型的机器学习用于分类。局部场电位动态可以在执行之前准确预测预期动作,当提前知道要求的动作时,在命令提示之前,受试者工作特征曲线下面积为 0.80 0.04。α 频段局部场电位活动爆发,尤其是 β 频段局部场电位活动爆发,严重影响了对要移动的肢体的预测。我们得出结论,低频爆发,尤其是 β 频段的爆发,限制了基底神经节系统编码有关预期动作的生理相关信息的能力。当前的发现也很重要,因为它们表明,除了恢复性脑机接口应用中的力量控制外,局部丘脑底活动可能被解码以实现效应器选择。
摘要:用化疗药物治疗儿童癌症可能导致成年后不孕。新一代药物被开发出来以替代母体药物,具有毒性副作用较小的潜在优势。对于铂类烷化剂,与母体化合物顺铂相比,据报道新一代药物卡铂在某些方面毒性降低,尽管其给药剂量比顺铂高 5-15 倍。卡铂对生殖系统的毒性是否也低于顺铂尚不清楚。我们在这里比较了顺铂和卡铂对雌性和雄性小鼠青春期前生殖腺的生殖腺毒性影响。体外培养的 CD1 小鼠卵巢或睾丸碎片在培养第 2 天暴露于顺铂或卡铂 24 小时,并在第 6 天进行分析。确定了卵巢(0.5、1 和 5 μg/ml 顺铂和 1、5 和 10 μg/ml 卡铂)和睾丸(0.01、0.05 和 0.1 μg/ml 顺铂和 0.1、0.5 和 1 μg/ml 卡铂)对每种药物的剂量反应。对于卵巢,1 μg/ml 顺铂(73% 不健康,P = 0.001)和 5 μg/ml 卡铂(84% 不健康,P = 0.001)导致卵泡不健康,同时卵泡数量减少(P = 0.001)。对于睾丸,增殖生殖细胞群显著减少,0.05 μg/ml 顺铂(减少 73%,P = 0.001)和 0.5 μg/ml 卡铂(减少 75%,P = 0.001),而对塞托利细胞群没有显著影响。总体而言,这项体外动物模型研究的结果表明,在患者等效浓度下,卡铂的生殖腺毒性不低于顺铂。
自 1958 年 Explorer-1 发射以来,NASA 已有 100 多个中小型任务使用过“Explorers”这个绰号,这些任务带回了与我们的家园、太阳和太空环境相关的宝贵科学数据,而其他任务则为观察宇宙打开了新的窗口。尽管管理“Explorers”任务的科学重点和程序方法随着时间的推移而发生了变化,但“Explorers”始终代表着介于亚轨道/小型卫星/立方体卫星任务和大型天文台之间的一系列有价值、节奏快的任务。自 1990 年代以来,Explorers 任务一直由竞争性的机会公告 (AO) 奖项推动,这些奖项将成本上限任务授予首席研究员 (PI) 领导的团队。地球系统探索者计划 (ESEP) 负责管理科学任务理事会 (SMD) 内地球科学部 (ESD) 的这些由 PI 领导的科学调查。通过 AO 竞争性选择进行的招标确保通过 ESEP 完成最新、最好的战略科学。
人工智能 (AI) 被认为具有产生重大经济和社会影响的潜力。然而,其兴衰周期的历史可能会让潜在的采用者持谨慎态度。进行了一项横断面定性研究,有针对性地抽取了来自研究、开发和业务职能部门的 AI 专家,以更深入地了解采用过程。技术就绪水平被用作基准,专家们可以据此调整他们的经验。提出了一种 AI 采用模型,该模型嵌入了人员、流程、技术视角的扩展版本,并结合了数据。该模型表明,除了技术准备之外,还需要人员、流程和数据准备,才能通过 AI 实现长期运营成功。研究结果进一步表明,创新型组织应在技术和业务职能之间架起桥梁。
美国宇航局的太空通信和导航 (SCaN) 计划是美国宇航局太空行动任务理事会 (SOMD) 下属的一个组织。SCaN 是 NASA 所有太空通信和导航活动的项目办公室,负责近太空网络 (NSN) 和深空网络 (DSN) 提供的地面和太空设施、设备和服务的运营、维护和维持。美国宇航局的 SCaN 网络在任务从发射到寿命结束和/或脱离轨道的整个运行生命周期内为太阳系的任何地方提供太空通信和导航服务。对于在到达深空目的地之前需要近太空服务的任务,或者在使用两个网络可能有利的地区运行的任务,例如在月球或太阳-地球拉格朗日点 1 (SE-L1) 和太阳-地球拉格朗日点 2 (SE-L2),每个网络都需要单独的任务集成过程。但是,SCaN 人员在跨网络合作方面有着悠久的历史,NSN 和 DSN 将协调支持使用这两个网络的任务。这种协调包括共享运营规划、寻找通用接口和共享任何测试的结果。DSN 由使用超大孔径(34 米和 70 米)天线的地面站组成,专注于为地球静止轨道 (GEO) 以外的任务提供支持。DSN 主要支持行星任务和距离地球 200 万公里以外的任务,这些区域被称为 B 类 - 深空。DSN 设施战略性地分布在三个地理位置:(1) 加利福尼亚州戈德斯通、(2) 西班牙马德里和 (3) 澳大利亚堪培拉。这些设施共同提供深空任务轨迹的近乎全天候覆盖。NSN 是近太空的主要服务提供商,因此更昂贵的 DSN 资产可以免费为深空任务提供 C&N 服务。本文档介绍了 SCaN 的近太空网络服务,该服务由 NASA 的戈达德太空飞行中心 (GSFC) 管理,并通过商业提供商和政府拥有的系统混合提供。本文档不涵盖此处提供的高级描述以外的 DSN。 DSN 的管理和运营由位于加利福尼亚州帕萨迪纳的喷气推进实验室 (JPL) 负责。本文档未包含有关 DSN 服务和功能的进一步描述。如需更多信息或购买 DSN 服务,请参阅 DSN 用户指南并联系 SCaN 的任务承诺办公室 (MCO)。