现代技术,尤其是人工智能,通过开发智能系统来优化从其一代到最终处置的最短路线,在改善医疗废物管理方面起着至关重要的作用。算法(例如Q学习和深Q网络)提高了运输和处置的效率,同时降低了环境污染的风险。在这项研究中,使用具有3吨能力的均质代理系统对人工智能算法进行培训,以优化封闭的电容车辆路由问题框架内医院之间的路线。将AI与探路技术集成在一起,尤其是混合A*-Deep Q网络方法,尽管最初的挑战,但仍导致了先进的结果。k均值聚类用于将医院分为区域,使代理可以使用深Q网络导航最短路径。分析表明,代理的能力尚未完全利用。这导致了使用Deep Q网络的分数背包动态编程应用,以最大程度地利用能力利用,同时实现最佳路线。由于用于比较算法的有效性的标准是车辆的数量和总车辆容量的利用率,因此发现具有DQN的分数背包脱颖而出,因为它需要最少的车辆数量(4),在该指标中达到0%的损失,因为它与最佳值相匹配。与其他需要5或7辆汽车的算法相比,它分别将车队尺寸降低了20%和42.86%。此外,与其他方法不同,它仅利用了车辆容量的33%至66%,它以100%的价格最大化车辆的容量利用率。但是,这种改进是以距离增加9%的成本,反映了每次旅行服务更多医院所需的较长路线。尽管取消了这种权衡,但该算法能够最大程度地减少车队的大小而充分利用车辆容量,这使其成为这些因素至关重要的情况下的最佳选择。这种方法不仅提高了性能,还提高了环境可持续性,使其成为研究中使用的所有算法中最有效,最具挑战性的解决方案。