这些成分均不来源于人类、动物或致病菌。根据存在的浓度,这些成分均不属于《危害通识标准》所定义的危险成分。这些产品不需要安全数据表 (SDS):这些制剂均不含有需要分发 SDS 的浓度的危险物质(根据 (EC) No 1272/2008 [EU-GHS/CLP] 法规及其修正案),根据 (EC) No 1272/2008 [EU-GHS/CLP] 法规及其修正案,根据 1907/2006 [REACH] 法规及其修正案)。如果发生泄漏,请用水清洗并遵循适当的现场程序。
2 美国利伯缇大学公共和社区健康系 摘要 纳米技术的最新进展极大地提高了近红外荧光 (NIRF) 探针在癌症成像中的实用性。本文研究了装载 NIR 染料(如吲哚菁绿 (ICG) 和 DiR)的纳米粒子的益处,这些染料以能够穿透深层组织和产生低背景自发荧光而闻名。利用增强的渗透性和保留 (EPR) 效应,这些纳米粒子可以有效靶向肿瘤组织,支持先进的成像技术和精准药物输送。该综述强调了 NIRF 成像在分子诊断中的变革潜力,特别是其在分子水平上区分恶性组织的能力。它还探索了各种 NIRF 染料类型,例如基于菁和 BODIPY 的探针,以及旨在增强成像特异性和治疗益处的多功能药剂。此外,结合包括抗体和小分子在内的靶向机制可提高这些探针的准确性。尽管存在药代动力学和毒性等挑战,纳米粒子探针能够实现实时肿瘤追踪和多模态成像,凸显了其在推进癌症诊断和治疗方面的关键作用。通过促进治疗诊断方法的整合,这些技术为个性化肿瘤治疗和改善患者预后提供了有希望的途径。关键词:近红外荧光 (NIRF) 成像;纳米粒子;癌症诊断;肿瘤靶向;生物相容性;分子成像 1. 简介 1.1. 近红外荧光 (NIRF) 成像概述
。cc-by-nc 4.0国际许可(未获得同行评审证明),他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月8日。 https://doi.org/10.1101/2025.01.08.631726 doi:biorxiv preprint
标题:使用原子探针断层扫描摘要在材料中看到氢:金属材料中的氢存在可能导致灾难性的早期裂缝,称为氢含糖。观察氢及其在微观结构中相关的影响一直是一个巨大的挑战,它限制了解决该问题的解决方案。为此,我们的研究小组开发了一种特殊的工具,即低温原子探针断层扫描(Cryo-Apt),用于氢图,并将其与微力方法结合使用,以研究钢中的氢化含量。我们的努力为破译钢中的氢气诱捕和拥抱机制提供了新的见解,从而促进了钢微结构的发展,钢微结构具有良好的抵抗力。bio:Yi-Sheng(Eason)Chen博士是Nanyang助理教授(NAP)和新加坡国家研究基金会(NRF)材料科学与工程学院,Nanyang Technological University,新加坡(NTU)。他的研究重点是材料表征,冶金和氢技术。专门使用高级显微镜技术,例如原子探针断层扫描(APT)和电子显微镜来开发高级金属材料的结构属性处理关系。从这些努力中获得的见解将有助于更深入地了解材料行为,为发展下一代高性能材料的发展铺平道路。他是Sinica学术界物理研究所的前研究助理。 参考:[1] Y.-S. Chen等。他是Sinica学术界物理研究所的前研究助理。参考:[1] Y.-S. Chen等。“金属中的氢诱捕和覆盖 - 综述。”国际氢能杂志(印刷中)(2024年)。https://www.sciendirect.com/science/article/pii/s036031992401332 6
Tansarli和Chapin(2019)的系统综述和荟萃分析检查了生物局部膜片脑膜炎/脑膜炎(ME)面板的诊断准确性。[2]对2016年至2019年进行的13项前瞻性和回顾性研究进行了审查(n = 3,764名患者);荟萃分析中包括8例(n = 3,059例)。荟萃分析中包括的是Leber [2016],[3]的研究,如下所述。研究中偏见的风险混合在一起,但倾向于低风险,指数测试方面最有问题。在任何研究中均未发现适用性。符合条件,与参考标准相比,研究必须提供灵敏度和特异性数据。研究中的患者感染了由面板上发现的多种成分引起的(细菌,病毒,加密型新羊角/gatti)。表2总结了准确性的灵敏度,特异性和其他测量值。假阳性结果的最高比例是肺炎链球菌(17.5%)和链球菌(15.4%)。对于单纯疱疹病毒1和2,肠病毒和C. neoformans/gatti,假阴性比例最高。使用ME面板的假阳性结果速率表明应谨慎使用此方法,应使用其他诊断方法来确认面板结果。
•支原体肺炎•淋病奈瑟氏菌•rubeola(麻疹)•金黄色葡萄球菌•金黄色葡萄球菌,耐甲氧西林•抗甲氧基•链球菌•链球菌,A组,A组,A•链球菌,B型链球菌,trichomonas agaginalis•Zikika•Zikika•Zikika Virus。在政策#171中介绍了分子诊断的使用来诊断和管理Borrelia burgdorferi感染(莱姆病)。在策略#711中介绍了多白素聚合酶链反应测试诊断细菌性阴道病的诊断。对于念珠菌物种,酵母菌的培养仍然是识别和区分这些生物的标准标准。对于核酸扩增测试(NAAT)的灵敏度和特异性高于标准测试方法,但CDC和其他关联指南不建议NAAT作为念珠菌物种的一线测试。CDC疾病控制与预防中心(2015年)将简单的外阴阴道念珠菌归类为零星或不常见;或轻度至中度;或者,在非免疫力低下的妇女中,是白色念珠菌引起的。可以在临床护理环境中进行推定诊断。然而,对于复杂的感染,CDC指出,NAAT可能需要测试多个念珠菌亚种。复杂的外阴阴道念珠菌病被归类为复发或严重;或者,对于患有不受控制的糖尿病,虚弱或免疫抑制的女性,白色念珠菌物种引起的可能性较小。链球菌的抗生素敏感性通常不是用于喉咙培养的。许多探针已被合并为测试面板。但是,如果考虑了抗生素敏感性,那么最有效的诊断方法将是一种培养和抗生素敏感性。在评估B组链球菌中,与传统培养技术相比,DNA探针技术的主要优点是结果的迅速。 这个优势表明,最适当的DNA探针技术是在即将到来的劳动力中,为此,迅速的结果可以允许启动产前抗生素疗法。 应注意的是,定量技术包括扩增和直接探针;因此,不保证使用放大或直接探针同时编码进行定量。 出于本政策的目的,除了胃肠道病原体面板和中枢神经系统面板之外,仅审查了单个探针。 使用直接或扩增的探针技术(有或没有定量的病毒载量)使用核酸测试是用于以下微生物在医学上所必需的:•巨细胞病毒•肝炎B病毒•丙型肝炎病毒•乙型肝炎病毒•HIV-1•HIV-1•HIV-2•HIV-2•HUMHARPESVIRUS 6。 使用核酸测试对病毒载量进行定量的使用被认为是针对未包括在有或没有定量的探针的微生物列表中的微生物的研究。在评估B组链球菌中,与传统培养技术相比,DNA探针技术的主要优点是结果的迅速。这个优势表明,最适当的DNA探针技术是在即将到来的劳动力中,为此,迅速的结果可以允许启动产前抗生素疗法。应注意的是,定量技术包括扩增和直接探针;因此,不保证使用放大或直接探针同时编码进行定量。出于本政策的目的,除了胃肠道病原体面板和中枢神经系统面板之外,仅审查了单个探针。使用直接或扩增的探针技术(有或没有定量的病毒载量)使用核酸测试是用于以下微生物在医学上所必需的:•巨细胞病毒•肝炎B病毒•丙型肝炎病毒•乙型肝炎病毒•HIV-1•HIV-1•HIV-2•HIV-2•HUMHARPESVIRUS 6。使用核酸测试对病毒载量进行定量的使用被认为是针对未包括在有或没有定量的探针的微生物列表中的微生物的研究。
在这项研究中,我们探讨了亚甲基蓝色吸附方法的有效性,作为确定氧化石墨烯特定表面积的替代方法。最初,通过参考活性碳的比较分析,我们确定了利用N 2物理吸附的局限性,用于特定的氧化石墨烯的表面积测定。我们的发现表明,N 2物理吸附前的标准预处理过程(在真空下进行加热)导致氧化石墨烯氧化石墨烯的表面氧基团损坏,并且测得的表面积(43 m 2 /g)并不能准确地代表整个表面积。为了优化氧化石墨烯的甲基蓝色覆盖范围,我们进行了吸附平衡实验,重点是控制温度和pH。pH在调节亚甲基蓝的覆盖范围方面非常重要。在优化的甲基蓝色吸附条件下,氧化石墨烯的比表面积为1,555 m 2 /g。我们对特定表面积计算的假设得到了不同甲基蓝色摄取样品的结构表征。结果通过扫描电子显微镜和能量分散X射线,X射线衍射和原子力显微镜证实了亚甲基在氧化石墨烯上的均匀覆盖范围。关键字:氧化石墨烯,亚甲基蓝,特定表面积。
核酸杂交技术利用 DNA 双螺旋结构的互补特性将来自不同来源的 DNA 片段退火在一起。这些技术用于聚合酶链式反应 (PCR) 和荧光共振能量转移 (FRET) 技术来识别微生物 (Khan, 2014)。对可能用探针技术检测到的每种传染性病原体的讨论超出了本政策的范围。许多探针已组合成测试组。出于本政策的目的,仅审查单个探针。有关阴道炎念珠菌核酸鉴定的指导,请参阅 AHS-M2057- 阴道炎诊断,包括多目标 PCR 检测。相关政策 肝炎检测 AHS – G2036 莱姆病 AHS – G2143 病原体检测 AHS – G2149 常见性传播感染诊断检测 AHS – G2157 媒介传播感染检测 AHS – G2158 阴道炎诊断 AHS – M2057
核酸杂交技术,包括聚合酶链反应(PCR),连接酶或解旋酶依赖性扩增以及转录介导的扩增,是由于高特异性和灵敏度而引起的血液培养和其他临床标本中病原体检测的有益工具(Khan,2014)。在临床实验室环境中使用基于核酸的方法检测细菌病原体,其特异性,敏感性,时间的降低和高吞吐能力,提供了“对传统微生物技术的敏感性和特异性”;但是,“污染潜力,缺乏标准化或某些测定法的验证,结果的复杂解释以及成本增加是这些测试的可能局限性”(Mothershed&Whitney,2006年)。
† 对于在六个标准 QIAcuity 通道(绿色、黄色、橙色、红色、深红色和远红色)中检测单个目标的多重反应,建议最终测定浓度为 0.8 µM 正向引物、0.8 µM 反向引物和 0.4 µM 探针。使用长斯托克斯位移染料时,需要不同的测定浓度。有关更多详细信息,请参阅 QIAcuity 高多重探针 PCR 试剂盒手册。