开尔文探针力显微镜是一种评估样品和探针尖端之间接触电位差的方法。除非使用具有已知功函数的参考标准(通常是块状金或高取向裂解热解石墨),否则它仍然是一种相对工具。在本报告中,我们建议采用光刻图案化、引线键合结构的形式来验证二维标准,该结构采用无转移 p 型氢插入准独立外延化学气相沉积石墨烯技术在半绝缘高纯度名义上轴上 4H-SiC(0001) 上制造。该特定结构的空穴密度为𝑝 𝑆 = 1.61 × 10 13 cm − 2,通过经典霍尔效应测得,其石墨烯层数为𝑁 = 1.74,该值是从椭偏角𝛹的分布中提取的,在入射角AOI = 50 ◦和波长𝜆 = 490 nm处测量,其功函数为𝜙 𝐺𝑅 = 4.79 eV,由特定𝑝 𝑆 和𝑁的密度泛函理论模型假定。按照该算法,结构和硅尖端之间的接触电位差在𝛥𝑉 𝐺𝑅 −Si = 0处得到验证。 64 V ,应该与𝜙 𝐺𝑅 = 4.79 eV 相关,并作为精确的参考值来计算任意材料的功函数。
摘要。我们描述了单个光圈大型宇宙研究(Saltus)任务的空间天文台结构和任务设计,国家航空航天及空间管理局(NASA)天体物理学探测器资源管理器的概念。Saltus将使用直径<45 K的主要反射器(M1)来解决关键的远红外科学,并将为行星,太阳系和银河进化研究和宇宙起源提供前所未有的光谱灵敏度。从诺斯罗普·格鲁曼(Northrop Grumman)广泛的NASA任务遗产中绘制,天文台飞行系统基于Leostar-3航天器平台,以携带盐盐有效载荷。有效载荷由通货膨胀控制系统,阳光模块(SM),冷校正器模块(CCM),温暖仪器电子模块和Primary反射器模块(PRM)组成。14-m M1是一种由两层阳光射线(每层约1000 m 2)冷却的轴膜片放射线。CCM校正了M1的残留差,并将聚焦的光束传递给两种仪器 - 高分辨率接收器(HIRX)和Safari-lite。CCM和PRM居住在基于桁架的复合甲板上,该甲板还为态度控制系统提供了一个平台。Saltus 5年的任务寿命是由两个可消耗的档案馆驱动的:推进剂系统和通货膨胀控制系统。核心界面模块(CIM)是一种多面复合桁架结构,提供了一个载荷路径,具有高刚度,机械附件和有效载荷和航天器之间的热分离。SM附着CIM外,其后端直接集成到总线上。航天器在太阳线方面保持了M1的态度的态度,以促进<45 K的热环境。盐盐将驻留在阳光下 - 地球光环2轨道,最大地球倾斜范围为180万公里,从而减少了轨道转移Delta-V。瞬时视野在黄道杆周围提供了两个连续的20度查看区域,从而在6个月内实现了全天空覆盖率。
FEP 医疗政策手册中包含的政策旨在协助管理合同福利,并不构成医疗建议。它们并非旨在取代或替代执业医师或其他医疗保健专业人员在治疗个人会员时做出的独立医疗判断。蓝十字蓝盾协会无意通过 FEP 医疗政策手册或任何特定医疗政策来推荐、提倡、鼓励或阻止任何特定医疗技术。与医疗技术相关的医疗决定应由会员/患者在咨询其医疗保健提供者后严格做出。某项服务或供应在医疗上是必需的这一结论并不构成蓝十字蓝盾服务福利计划为特定会员承保(或支付)此项服务或供应的陈述或保证。
摘要:我们引入了一个灵活的显微镜全纤维 - 光学拉曼探针,该探针可以嵌入设备中以启用Operando的原位光谱。便捷的探针由嵌套的反无核核纤维与集成的高折射率钛酸稀盐Microlens组成。泵激光785 nm激发和近红外收集是独立表征的,表明了全宽度最大最大1.1μm的激发点。由于这比有效的收集区小得多,因此对收集的拉曼散射的影响最大。我们的表征方案提供了适合使用纤维类型和微球的各种组合来测试这些纤维探针功效的合适方案。在表面增强的拉曼光谱样品和铜电池电极上进行的拉曼测量结果证明了纤维探针的生存能力,可以替代散装视神经拉曼显微镜,从而与10个目标相当地收集,从而为在诸如岩石电池监控等应用中的Operando Raman研究铺平了道路。关键字:空心核纤维,拉曼,Microlens,原位,纤维探针,光子纳米夹■简介
CVD的负担,包括房颤,动脉粥样硬化,慢性肢体威胁性缺血(CLTI)和冠状动脉疾病,以及它们与脑部疾病(如动脉瘤和中风)的病理生理联系。遗憾的是,受CVD影响的器官通常很细腻,位于偏远的阳离子中,对传统治疗方法提出了重大挑战。在当代血管内手术中,流行的方法需要通过荧光镜检查帮助手动导管插入术。在这些过程中,确保对手术导管与细腻的大脑,心脏和周围血管组织的近端进行精确控制至关重要。手动仪器提供可操作性,但它们的功能受到限制。此外,诸如融合成像之类的现代成像技术很难进行,例如在CLTI患者的下肢血运重建程序中。为了解决这个问题,采用肌腱驱动的设备来增强灵活性。然而,这些设备容易出现准确性,是造成摩擦的限制,可能导致弹簧衰竭或原位动脉损伤,尤其是在极端情况下。此外,使用对比材料改善软组织可视化可能会引起不良反应,例如肾功能不全。不幸的是,许多多病和脆弱的血管患者仍未治疗,因为他们被认为具有太多的合并症无法接受手术,而内血管内干预措施的成功率仍然有限。考虑到该患者组中有超过三分之一与CVD相关的死亡发生,这特别令人震惊。
• Sessi 等人,拓扑手性半金属 PdGa 两种对映体中手性相关的准粒子干涉。自然通讯 11 ,3507 (2020) https://doi.org/10.1038/s41467-020-17261-x • Zhang 等人,拓扑超导异质结构中的竞争能级。纳米快报 21 ,2758-2765,(2021)。https://doi.org/10.1021/acs.nanolett.0c04648 • Chang 等人,SnTe/PbTe 单层横向异质结构中的涡旋取向铁电畴。先进材料,33 ,2102267 (2021)。 https://doi.org/10.1002/adma.202102267 • Küster 等人,将约瑟夫森超电流和 Shiba 态与非常规耦合到超导体的量子自旋关联起来。《自然通讯》12,1108 (2021)。https://doi.org/10.1038/s41467-021-21347-5 • Küster 等人,与超导凝聚态耦合的局部自旋之间的长距离和高度可调相互作用。《自然通讯》12,6722 (2021)。https://doi.org/10.1038/s41467-021-26802-x • Brinker 等人,原子制作的量子磁体的异常激发。《科学进展》8,eabi7291 (2022)。 DOI:10.1126/sciadv.abi7291 • Küster 等人,稀疏自旋链中的非马约拉纳模式接近超导体。美国国家科学院院刊 119,e2210589119 (2022)。https://doi.org/10.1073/pnas.2210589119 • Soldini 等人,二维 Shiba 晶格作为晶体拓扑超导的可能平台。自然物理学 19,1848–1854 (2023)。https://doi.org/10.1038/s41567-023-02104-5 • Wagner 等人,Designer-Supraleiter nehmen Form an。物理学家时代 (2024) https://doi.org/10.1002/piuz.202401701
近年来,3D打印技术引起了很多关注。由于其低生产成本以及制造复合和几何形状的能力,在许多行业中使用3D打印技术被广泛接受。本文通过将3D打印技术用于超声扫描仪应用程序,介绍了探针持有人的制造。3D打印探针持有人的制造始于Taguchi技术设计(DOE)。确定了三个主要影响:打印温度,层厚度和填充密度。SolidWorks软件用于构建探针持有人的计算机辅助设计(CAD)模型。随后,将CAD模型文件转换为3D打印过程的标准Tessellation语言(STL)文件。使用3D打印机成功制造了探针持有人,在3D印刷产品的外表面上没有任何缺陷。基于弯曲测试结果,可以得出结论,探针持有人的强度是由层厚度归因于层的。
摘要 目的. 将穿透性神经探针插入大脑对于神经科学的发展至关重要,但它涉及各种固有风险。原型探针通常插入水凝胶基大脑模型中,并分析其机械响应以了解体内植入期间的插入力学。然而,人们对神经探针在水凝胶大脑模型中插入动力学的潜在机制,特别是开裂现象,仍了解不足。这种知识差距导致在将模型研究获得的结果与在体内条件下观察到的结果进行比较时出现误解和差异。本研究旨在阐明探针的锐度和尺寸对探针插入水凝胶模型时出现的开裂机制和插入动力学的影响。方法. 系统地研究了由尖端角度、宽度和厚度定义的不同柄形状的假探针的插入。透明水凝胶中插入引起的裂纹用不混溶染料加重,通过原位成像跟踪,并记录相应的插入力。开发了三维有限元分析模型来获得探针尖端和幻像之间的接触应力。主要结果。研究结果揭示了一种双重模式:对于尖锐、细长的探针,由于与插入方向一致的直裂纹不断扩展,插入力在插入过程中始终保持在较低水平。相反,钝的、厚的探针会产生很大的力,并且随着插入深度的增加而迅速增加,这主要是由于形成了具有锥形裂纹表面的分支裂纹,以及随后的内部压缩。这种解释挑战了传统的理解,即忽视了开裂模式的差异,并将增加的摩擦力视为导致更高插入力的唯一因素。通过实验确定了区分直裂纹和分支裂纹的关键探针锐度因素,并从三维有限元分析中得出了两种开裂模式之间转变的初步解释。意义。本研究首次提出了神经探针插入水凝胶脑模型时两种不同开裂模式的机制。建立了开裂模式与插入力动力学之间的相关性以及探针锐度的影响,通过模型研究为神经探针的设计提供了见解,并为未来研究探针植入过程中脑组织开裂现象提供了参考。
二维(2D)材料中的摘要研究兴趣由于其独特而引人入胜的特性而导致了指数增长。高度裸露的晶格平面以及2D材料的可调电子状态在设计新平台上为能量转换和传感应用的新平台创造了流动机会。仍然,理解这些材料的电化学(EC)特征的挑战是源于固有和外在异质性的复杂性,这些异质性可能会掩盖结构 - 活性相关性。扫描EC探针显微镜调查在揭示纳米级级别的局部EC重新激素方面提供了独特的好处,而纳米级级别则无法使用宏观方法。本综述总结了应用扫描EC显微镜(SECM)和扫描EC细胞显微镜(SECCM)的最新进展,以获得对2D电极基本面的独特见解。我们展示了EC显微镜在解决缺陷,厚度,环境,应变,相位,堆叠和许多其他方面的功能,以及代表性2D材料及其衍生物及其衍生物的光电化学。对扫描EC探针显微镜调查的优势,挑战和未来机会的观点进行了讨论。