肥厚性心肌病(HCM)是最常见的心脏病,其特征是原发性左心室肥大通常是由肌节基因突变引起的。HCM中心脏重塑的基础机制仍然不完全理解。通过在多词水平上通过综合分析对HCM进行研究将有助于治疗HCM。使用HCM患者的心脏组织分别评估了分别通过核小体占用率和甲基甲基测序(NOME-SEQ)和RNA-SEQ评估 DNA甲基化和染色质访问性以及基因表达。与对照组相比,HCM心肌的转录组,DNA甲基甲基机和染色质可及性显示出多方面的差异。在转录组水平上,HCM心脏通过降低肉瘤和代谢基因表达并增加细胞外基质基因表达来返回胎儿基因程序。。在染色质可及性水平上,HCM心脏显示出不同基因组元素的变化。包括SP1和EGR1在内的几个转录因子(TF)在HCM中表现出胎儿样结合基序(NDRS)的胎儿样模式。尤其是,携带肌节突变的HCM小鼠模型中SP1或EGR1的抑制明显缓解了突变小鼠的HCM表型并逆转了胎儿基因重编程。总体而言,这项研究不仅提供了HCM心脏组织的高精度多摩学图,而且还通过介入HCM中的胎儿基因重编程来阐明治疗策略。
毫无疑问,生成式人工智能 (AI) 是近年来媒体上的热门话题。这最初是由 ChatGPT 和其他平台的流行和广泛使用推动的,这些平台可根据用户输入的提示生成书面材料、图像甚至音频/视频作品。AI 将生成式人工智能定义为:“一种使用机器学习算法来创建新的原创内容(如图像、视频、文本和音频)的人工智能” [1]。这些技术进步如何影响我们的科学出版界?具体来说,在撰写出版的科学文章时,何时使用此类工具是合适的,或许更重要的是,何时不适合?严格来说,每当文字处理器建议一种更好的句子措辞方式时,基础人工智能就会被应用到写作中。从更复杂的层面来看,作者可以使用大型语言模型 (LLM) 将粗略撰写的草稿提交给生成式 AI 平台,然后可以生成更复杂的书面输出并最终提交。如果英语课的学生提交了这样一篇作业,而这堂课的目的是教学生如何写好文章,那么这种使用 AI 的行为可能构成作弊。然而,当作者使用 AI 来帮助润色他们的作品以供出版时,这应该是完全合适的,因为这样的应用程序可以增强作品,帮助读者更好地理解和欣赏这些作品。我们的期刊最近开始为我们的作者提供使用“综合写作和出版助手”来改进他们的投稿的选项。投稿作者应该看到我们与 Paperpal 飞行前筛选工具合作的服务链接。只需支付非常合理的费用,该工具就可以对上传的手稿草稿进行翻译、释义、一致性和期刊提交准备情况检查。这项服务对一些可能难以满足我们的语言要求标准的国际作者特别有用。在另一个适用于出版的场景中,假设同行评审员希望使用 AI 来评估投稿。你可能会问:“等等,AI 能做到吗?”当然可以!但这可以接受吗?确实有一些平台在公开的生物医学出版物上进行了训练,因此 AI 能够查找参考文献来帮助同行评审员评估稿件。也许同行评审员只是需要帮助开始撰写评审的第一稿,或者他们可能觉得作者的语言技能需要很多帮助,就像前面的情况一样。然而,这里的一个主要区别是,当同行评审员在其中一个平台上上传稿件时,他们会违反保密规定,这是不可接受的。美国国立卫生研究院不允许将 AI 用于资助申请的同行评审 [ 2 ],这种技术也不应用于出版同行评审,因为当作者的手稿上传到第三方平台时,也会发生同样的保密性泄露。Hosseini 和 Horbach (2023) 指出的其他担忧是“ LLM 的训练数据、内部运作、数据处理和开发过程的根本不透明性”,这可能导致“潜在的偏见和评审报告的可重复性” [3]。因此,将指示 JECT 同行评审员在进行评估时不要依赖此类系统。此外,编辑不会仅使用 AI 工具就任何手稿的最终结果做出决定。为了帮助作者驾驭这一新领域,JECT 将努力在我们的《作者须知》中提供新的指导,就像其他期刊目前正在实施的那样 [4]。其他期刊推荐的一些原则,我们可能会采用,包括:
A.P. Morozov1§,L.O。 Luchnikov1§,S。Yu。 Yurchuk 2,A.R。 Ishshev 1,P.A。 书1,S.I。 Didenko 2,N.S。 Saratovsky 3,D.O。 Balkirewer 3,i.v. 朝三,A.A。 Romanov 2,E.A。 Ilicheva 1,A.A。 Vasive 2,S.S。 Cozlov 4,D.S。 Muratov 5*,Yu。 N. Luponosov 3*和D.S. sarani 1* 1法律1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 11949莫斯科,119049莫斯科部门俄罗斯科学家(ISPM RAS)的材料,Profsoyuznaya St. 70,莫斯科,117393,俄罗斯A.P.Morozov1§,L.O。Luchnikov1§,S。Yu。Yurchuk 2,A.R。 Ishshev 1,P.A。 书1,S.I。 Didenko 2,N.S。 Saratovsky 3,D.O。 Balkirewer 3,i.v. 朝三,A.A。 Romanov 2,E.A。 Ilicheva 1,A.A。 Vasive 2,S.S。 Cozlov 4,D.S。 Muratov 5*,Yu。 N. Luponosov 3*和D.S. sarani 1* 1法律1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 11949莫斯科,119049莫斯科部门俄罗斯科学家(ISPM RAS)的材料,Profsoyuznaya St. 70,莫斯科,117393,俄罗斯Yurchuk 2,A.R。Ishshev 1,P.A。 书1,S.I。 Didenko 2,N.S。 Saratovsky 3,D.O。 Balkirewer 3,i.v. 朝三,A.A。 Romanov 2,E.A。 Ilicheva 1,A.A。 Vasive 2,S.S。 Cozlov 4,D.S。 Muratov 5*,Yu。 N. Luponosov 3*和D.S. sarani 1* 1法律1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 11949莫斯科,119049莫斯科部门俄罗斯科学家(ISPM RAS)的材料,Profsoyuznaya St. 70,莫斯科,117393,俄罗斯Ishshev 1,P.A。书1,S.I。 Didenko 2,N.S。 Saratovsky 3,D.O。 Balkirewer 3,i.v. 朝三,A.A。 Romanov 2,E.A。 Ilicheva 1,A.A。 Vasive 2,S.S。 Cozlov 4,D.S。 Muratov 5*,Yu。 N. Luponosov 3*和D.S. sarani 1* 1法律1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 11949莫斯科,119049莫斯科部门俄罗斯科学家(ISPM RAS)的材料,Profsoyuznaya St. 70,莫斯科,117393,俄罗斯书1,S.I。Didenko 2,N.S。 Saratovsky 3,D.O。 Balkirewer 3,i.v. 朝三,A.A。 Romanov 2,E.A。 Ilicheva 1,A.A。 Vasive 2,S.S。 Cozlov 4,D.S。 Muratov 5*,Yu。 N. Luponosov 3*和D.S. sarani 1* 1法律1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 11949莫斯科,119049莫斯科部门俄罗斯科学家(ISPM RAS)的材料,Profsoyuznaya St. 70,莫斯科,117393,俄罗斯Didenko 2,N.S。Saratovsky 3,D.O。 Balkirewer 3,i.v. 朝三,A.A。 Romanov 2,E.A。 Ilicheva 1,A.A。 Vasive 2,S.S。 Cozlov 4,D.S。 Muratov 5*,Yu。 N. Luponosov 3*和D.S. sarani 1* 1法律1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 11949莫斯科,119049莫斯科部门俄罗斯科学家(ISPM RAS)的材料,Profsoyuznaya St. 70,莫斯科,117393,俄罗斯Saratovsky 3,D.O。Balkirewer 3,i.v.朝三,A.A。 Romanov 2,E.A。Ilicheva 1,A.A。 Vasive 2,S.S。 Cozlov 4,D.S。 Muratov 5*,Yu。 N. Luponosov 3*和D.S. sarani 1* 1法律1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 11949莫斯科,119049莫斯科部门俄罗斯科学家(ISPM RAS)的材料,Profsoyuznaya St. 70,莫斯科,117393,俄罗斯Ilicheva 1,A.A。 Vasive 2,S.S。 Cozlov 4,D.S。Muratov 5*,Yu。 N. Luponosov 3*和D.S. sarani 1* 1法律1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 11949莫斯科,119049莫斯科部门俄罗斯科学家(ISPM RAS)的材料,Profsoyuznaya St. 70,莫斯科,117393,俄罗斯Muratov 5*,Yu。N. Luponosov 3*和D.S.sarani 1* 1法律1* 1* 1* 1* 1* 1* 1* 1* 1* 1* 11949莫斯科,119049莫斯科部门俄罗斯科学家(ISPM RAS)的材料,Profsoyuznaya St. 70,莫斯科,117393,俄罗斯
石英调谐叉最近被用作可调激光二极管光谱的红外光电探测器,因为它们的响应率很高和快速响应时间。至于用于光电检测的所有灵敏元素,主要缺点是它们吸收光谱的有限带宽。对于石英晶体而言,高于5 µm的波长的高吸收性可确保在中红外范围内出色的性能,由于其透明度从0.2 µm到5 µm,因此在可见/近红外范围内无法轻易扩展。在这项工作中,我们报告了激光表面功能化过程的开发,以增强在1-5 µM光谱范围内称为黑色石英的石英晶体的光吸收。黑色石英由超快速激光处理对石英晶体的表面修饰组成,以在顶部创建类似陨石坑的局部矩阵样模式。表面修饰降低了1-5 µm中石英的透射率范围从> 95%降低至<10%,而高于5 µm的透射率保持不变。将黑色石英过程应用于两个石英 - 调谐叉上,该石英叉安装在可调激光二极管光谱传感器中,用于检测两个水蒸气吸收特征,一个在近红外,另一个在中红外。在检测两个吸收特征时估计了可比的响应性,证实了在近红外范围内操作的扩展。这项工作代表了在整个红外光谱范围内具有高响应性的基于石英的光电探测器实现的重要而有希望的步骤。
飞秒激光制造技术已应用于光子范围模式(DE)多路复用器。基于飞秒激光制造技术的当前光子灯笼模式(DE)多路复用器设计主要遵循纤维型光子光子灯笼设计,该设计使用具有非均匀波导的轨迹对称结构进行选择性模式激发。但是,非均匀的波导可能导致不一致的波导传输和耦合损失。轨迹对称设计的选择性模式激发效率低下。因此,我们使用具有均匀波导的轨迹不对称性和制造的超快激光默认的光子灯笼模式(DE)多路复用器优化了设计。在1550 nm处的一致的波导传输和耦合损耗(分别为0.1 db/cm和0.2 db/facet)在均匀的单模波导上获得。基于光子灯笼模式(DE)多路复用器的轨迹 - 空气设计,有效模式激发(,,和)的平均插入损失在1550 nm时的平均插入损失低至1 dB,并且模式依赖性损失小于0.3 db。光子范围的设计对极化不敏感,而两极分化确定的损失小于0.2 dB。以及通过纤维型极化光束拆分器所实现的偏振化多路复用,六个信号通道(,,,,和)携带42个Gaud/s正交相位移位键信号,通过几个模式纤维进行传输,用于光学透射。这项研究的发现为3D集成光子芯片在大容量光学传输系统中的实际应用铺平了道路。系统的平均插入损失小于5 dB,而其与几种模式纤维的最大串扰小于-12 dB,导致4-DB功率损失。