靶向肿瘤相关抗原 (TAA) 的双特异性 T 细胞接合剂 (TCE) 是一种经过验证的治疗策略,但迄今为止,它们在实体瘤中的成功率有限。关键挑战包括健康组织中 TAA 表达的靶向、肿瘤外毒性、广泛的全身性 T 细胞激活引起的细胞因子释放综合征以及阻碍抗肿瘤免疫的免疫抑制性实体瘤微环境 (TME)。为了解决这些限制,我们开发了选择性效应增强细胞接合剂 (SEECR),这是一类新型的肿瘤可激活、免疫细胞接合双特异性分子,旨在在外周组织中保持最低活性,同时在 TME 中富集的蛋白酶切割后选择性激活。SEECR-T 分子旨在同时接合癌细胞上的 TAA、T 细胞上的 CD3 并结合共刺激结构域以增强 T 细胞活化和功能。
DNA 化学修饰是改善寡核苷酸特性的常用策略,尤其适用于治疗和纳米技术。现有的合成方法主要依赖于亚磷酰胺化学或核苷三磷酸的聚合,但在规模、可扩展性和可持续性方面受到限制。在此,我们报告了一种使用模板依赖性短片段 DNA 连接的从头合成修饰寡核苷酸的可靠替代方法。我们的方法基于化学修饰的短单磷酸盐作为 T3 DNA 连接酶底物的快速和可扩展性。该方法表现出对化学修饰的高耐受性、灵活性和整体效率,从而最终可以获得各种不同长度(20 → 120 个核苷酸)的修饰寡核苷酸。我们已将该方法应用于临床相关的反义药物和各种修饰的超聚体的合成。此外,设计的化学酶方法在治疗和生物技术领域具有巨大的应用潜力。
在制药行业中发现药物到营销潜在药物的旅程是一个多方面的过程,需要大量投资并包括各个阶段。在此过程中的一个关键步骤称为HIT鉴定阳离子,其中涉及从大量化合物中识别可以与特定C靶标结合的小分子并引起所需的生物学效应,例如抑制疾病引起蛋白质的活性。1 - 4有几种传统的识别方法,5 - 8,但是DNA编码的图书馆(DEL)筛选技术在近年来在学术和制药行业环境中引起了人们的关注。9 - 14该技术涉及编码具有独特DNA标签的许多小分子并将其暴露于靶蛋白上,从而识别出通过测序其DNA标签选择性结合与蛋白质的分子的鉴定(图1)。
随着生物甲烷扇形发展的发展,其在天然气网络中的注入增加,包括地质储藏。 在注射之前,添加O 2以消除Suldes。 在地质存储中预计O 2的共同注入(可接受的100 ppm的限制),例如深含水层,这些含水层含有自动微生物。 此O 2严格威胁着厌氧微生物及其来自天然气存储的单芳族烃的生物降解活性。 模拟深含水层条件的多学科研究对于conte或适应O 2的授权限制至关重要。 我们的研究没有显示含水岩石(矿物质和孔隙率)的主要修饰,而是社区多样性的含量,消除了耐药性较低的含量,并产生了新的平衡,从而允许苯降解。随着生物甲烷扇形发展的发展,其在天然气网络中的注入增加,包括地质储藏。在注射之前,添加O 2以消除Suldes。在地质存储中预计O 2的共同注入(可接受的100 ppm的限制),例如深含水层,这些含水层含有自动微生物。此O 2严格威胁着厌氧微生物及其来自天然气存储的单芳族烃的生物降解活性。模拟深含水层条件的多学科研究对于conte或适应O 2的授权限制至关重要。我们的研究没有显示含水岩石(矿物质和孔隙率)的主要修饰,而是社区多样性的含量,消除了耐药性较低的含量,并产生了新的平衡,从而允许苯降解。
金属连接网络 (MBN) 是指飞机末端(机翼、尾翼、垂直稳定器等)内各种金属部件的有意互连,以建立低电阻路径并均衡电势。MBN 确保飞机结构和设备不同部分之间的有效连接,特别是为了缓解 ESD。MBN 通过提供低电阻路径,使静电荷通过导电结构通过电离消散到环境中,或通过起落架和导电橡胶飞机轮胎直接接地,从而帮助消除静电放电事件。接合面粘合和粘合带(也称为“柔性接头”)用于物理连接金属和结构部件,例如机翼、控制面、天线和静电芯,以建立电连续性并均衡电势。这些接地连接有助于防止整个飞机中静电的积聚,这是电磁干扰管理中一项关键的安全要求和缓解因素。ESN 和 MBN 是整体电气接地和保护策略不可或缺的组成部分,它们共同提供可靠的电气环境、减轻雷击相关风险并管理 EMI。最重要的是,这两个系统对于满足乘客和环境安全要求至关重要——这是所有飞机的基本问题,但对于 eVTOL 车辆来说尤其令人担忧,因为 eVTOL 车辆必须实施更严格的接地程序,以有效地接地高压电池、控制器和电机,以保护乘客和地勤人员。
如果您的小发电机安装了设备,使我们能够远程控制小发电机,我们可能会根据能量法使用设备来暂时中断或减少提供从小型发电机将供应服务带入分配系统的供应服务。我们发布有关规则要求使用遥控设备的信息。该信息可在我们的网站(www.ergon.com.au)上获得,或者您可以与我们联系以请求副本。
急性髓细胞白血病 (AML) 是最常见的白血病类型,5 年生存率为 25%。AML 的标准治疗方法在过去几十年中没有改变。有前景的免疫疗法正在被开发用于治疗 AML;然而,这些方案需要非常费力和复杂的技术。我们使用与单克隆抗体结合的脂质体创建纳米 TCE 以实现特异性结合。我们还使用我们的 3D 培养系统重建骨髓微环境,并使用免疫功能低下的小鼠,以便将人类 AML 和 T 细胞与纳米 TCE 一起使用。我们表明 CD33 普遍存在于 AML 细胞中。与同种型相比,CD33 纳米 TCE 优先与 AML 细胞结合。我们表明纳米 TCE 可有效激活 T 细胞并在体外和体内诱导 AML 杀灭。我们的研究结果表明,我们的纳米TCE 技术是一种治疗 AML 的新型且很有前景的免疫疗法,并为在大型动物和患者中使用纳米TCE 的验证提供了补充研究基础。
1 德累斯顿工业大学医学院,NCT / UCC 早期临床试验部,德累斯顿,德国 2 西班牙巴塞罗那 Vall d'Hebron 大学医院肿瘤内科系和 Vall d'Hebron 肿瘤研究所 3 西班牙瓦伦西亚瓦伦西亚大学医院肿瘤内科系,INCLIVA 生物医学研究所 4 日本千叶县柏市国立癌症中心东医院实验治疗学系 5 华盛顿大学医学院,密苏里州圣路易斯 63110,美国 6 勃林格殷格翰法国 SAS,法国兰斯 7 勃林格殷格翰制药公司,美国康涅狄格州里奇菲尔德 06877 8 勃林格殷格翰国际有限公司,德国殷格翰 9 美国宾夕法尼亚州匹兹堡大学 UPMC Hillman 癌症中心血液学/肿瘤学分部 15232 *通讯作者:martin.wermke@uniklinikum-dresden.de
本报告包含某些前瞻性陈述,这些陈述涉及风险和不确定性,可能导致实际结果与历史结果或此类前瞻性陈述中明示或暗示的有关 Janux Therapeutics, Inc.(“公司”)的任何未来结果存在重大差异。这些前瞻性陈述包括但不限于有关公司为有需要的患者提供新疗法的能力、公司药物开发计划的进展和预期时间、临床开发计划和时间表、监管备案的时间和计划、市场规模和机会、公司的战略和知识产权事务以及有关公司费用、资本要求和额外融资需求的估计。由于此类陈述受风险和不确定性的影响,实际结果可能与此类前瞻性陈述中明示或暗示的结果存在重大差异。可能导致实际结果出现重大差异的因素包括早期研究中看似有希望的化合物在后期临床前研究或临床试验中未证明安全性和/或有效性的风险、公司可能无法获得其候选产品上市批准的风险、与进行临床试验、监管备案和申请相关的不确定性、与依赖第三方成功进行临床试验相关的风险、与依赖外部融资满足资本要求相关的风险以及与发现、开发和商业化安全有效的人类治疗药物以及围绕此类药物建立业务的努力相关的其他风险。鉴于这些风险、不确定性、意外事件和假设,前瞻性陈述中提及的事件或情况可能不会发生。有关公司面临的风险和不确定性的进一步列表和描述,请参阅公司向美国证券交易委员会提交的定期和其他文件,该文件可在 www.sec.gov 上查阅。此类前瞻性陈述仅在其作出之日有效,公司不承担更新任何前瞻性陈述的义务,无论由于新信息、未来事件还是其他原因。
摘要 背景 尽管 T 细胞接合剂 (TCE) 针对血液系统恶性肿瘤取得了临床成功,但对实体瘤患者实现安全有效的剂量仍然具有挑战性。由于效力,正常组织上靶抗原的低水平表达可能无法容忍。为了克服这个问题,我们设计了一种新型条件活性 TCE 设计,称为 COBRA(条件双特异性重定向激活)。作为前体药物给药,COBRA 可与正常和肿瘤组织上的细胞表面抗原结合,但优先在肿瘤微环境中被激活。 方法 COBRA 被设计为靶向 EGFR、TAK-186。体外评估了预裂解 TAK-186 相对于不可裂解对照的效力。对患有表达一系列 EGFR 水平的已建立实体瘤的小鼠施用单次人类 T 细胞推注,并同时静脉内用 TAK-186 和相关对照治疗。我们评估了完整和裂解的 TAK-186 在血浆和肿瘤中的暴露情况。结果 TAK-186 显示出对表达抗原的肿瘤细胞的强效重定向 T 细胞杀伤力。体内疗效研究表明,已建立的实体肿瘤的消退依赖于肿瘤内的 COBRA 裂解。药代动力学研究表明 TAK-186 在循环中稳定,但一旦被激活就会迅速清除,因为其白蛋白结合半衰期延长域的丧失。结论所展示的研究支持 TAK-186 的进步,并支持寻求更多 COBRA TCE 用于治疗实体肿瘤。