Splice 求解采用非线性桩基础建模的线性弹性上部结构的桩结构界面点位移。“Splice”包括 Gensod、Pilgen 和 Splice 程序。Splice 这个名称用于单独的程序 Splice 以及桩程序套件 Gensod、Pilgen 和 Splice。Gensod 生成土壤曲线。Pilgen 创建桩数据;几何形状、横截面数据、重量、桩头载荷等。Gensod 和 Pilgen 都生成数据文件,然后由 Splice 读取。Splice 求解由土壤、桩和(如果需要)Sestra 生成的上部结构连接刚度组成的非线性方程组。图 1.2 显示了 Sesam 系统中 Splice 的概览。Sestra 将分析线性护套并生成减小的刚度矩阵和施加在耦合节点处的载荷矢量,即所谓的减小步骤。通过此输入,Splice 将解决非线性桩-土-上部结构系统并计算桩中的位移和力。这将输入到 Sestra,Sestra 将通过重追踪过程找到套管中的力和位移。该过程如图 1.1 所示。
2024年1月,Windeurope和Solar Power Europe的联合声明就《净零行业法》(NZIA)中获得市场规则的访问。为了增强风能和太阳能供应链的弹性,NZIA必须在政府AUC!ONS中开发出技术特定的方法,以确认政府的奖励和非优势奖励标准,并认识到这两个技术的供应链中非常不同的星空!Windeurope and Solar Power Europe完全赞同欧盟的绿色交易行业计划OBJEC(VES,加强风和太阳能等战略净零技术中的欧洲供应链。《零净业法案》是该议程的基石。我们充分支持NZIA关于市场获取和PAR的规定(Cular Art 20,利用政府AUC(ONS促进这些OBJEC(通过Qualififife)(ves ves vies to-qualififife)(ON和非提高奖励标准。最重要的是,应用程序(按照此类标准和AUC的份额(在这些标准上可以适用的市场)都以技术为特定的基础设置。对于风,标准前CA(关于与负责任的商业行为,网络安全和数据安全有关的标准,以及完全及其项目交付项目的能力(我应适用于100%的AUC(根据风力发电套件的开头,从开始。对于太阳能,AUC的份额(使用标准前CA(ON和非价格奖励标准)应在启动中阐明(NG ACT在采用后的9个月内(NG ON NZIA,对应于AUC,对应于AUC(2025年在2025年5GW和2030年的5GW)。不可能应用一个尺寸的所有Solu(在此处。该提案也得到了欧洲太阳能光伏联盟(ESIA)1的支持。这种量身定制的方法是Essen(考虑到非常不同的供应链星(风和太阳能之间的NG点,以及与任何其他战略性零零技术之间的位置。- 对于太阳能PV:当今的现实是,相关卷中尚不可用太阳能PV模块值链中的欧盟生产的组件。当今欧洲的预期2023太阳能模块部署的预期2023太阳能模块部署不到3%(1.5 gw)。因此,我们要求与AUC相对应的太阳能PV(2025年约5GW约5GW和2030年30GW的太阳能PV)要求特定的“弹性AUC(ONS”)。- 对于风:欧洲供应链可以升级以满足所需的量,前提是政府在persiang,auc,auc上采取的措施(在设计上 - 尤其是indexa(of auc of auc of auc of auc of auc of tari效率)(在未来卷上可见性,
通常使用拼接来保持机翼蒙皮的空气动力学表面整洁。机翼是飞机产生升力的最重要的部件。机翼的设计因飞机类型和用途而异。翼盒有两个关键接头,即蒙皮拼接接头和翼梁拼接接头。内侧和外侧部分的顶部和底部蒙皮通过蒙皮拼接连接在一起。内侧和外侧的前翼梁和后翼梁通过翼梁拼接连接在一起。蒙皮承受机翼中的大部分弯曲力矩,而翼梁承受剪切力。本研究对机翼蒙皮的弦向拼接进行了详细分析。拼接被视为在机翼弯曲引起的平面内拉伸载荷作用下的多排铆钉接头。对接头进行了应力分析,以预测旁路载荷和轴承载荷引起的铆钉孔处应力。应力是使用有限元法在 PATRAN/NASTRAN 的帮助下计算的。疲劳裂纹将出现在机身结构中高拉伸应力的位置。此外,研究了这些位置总是高应力集中的位置。结构构件的寿命预测需要一个疲劳损伤累积模型。各种应力比和局部的应力寿命曲线数据
胶粘接头:测试、分析和设计/W.S.Johnson,编辑。(ASTM 特别技术出版物;981)“胶粘接头国际研讨会:测试、分析和设计于 1986 年 9 月 10 日至 12 日在马里兰州巴尔的摩举行。此次活动由 ASTM 胶粘剂委员会 D-14 赞助”— 前言。“ASTM 出版物代码编号 (PCN) 04-981000-25。”包括参考书目和索引。ISBN 0-8031-0993-8 1。胶粘接头 — 测试 — 会议。I. Johnson, W. S. (W. Steven) II.胶粘接头国际研讨会:测试、分析和设计 (1986 年:马里兰州巴尔的摩)III.ASTM 胶粘剂委员会 D-14。IV.系列。TA492.A3A34 1988 88-6912 668'.3-dcl9 CIP
粘合解决方案为包装提供了总体强度。密封剂可能以1K聚氨酯(PU),硅酸盐或盐水终止聚合物(STP)配方配合使用。单元格键合需要EMI屏蔽和接地以及阻燃性,这是在热失控事件的情况下的关键因素。通常,在小袋细胞中,使用PSA或橡胶泡沫,而棱柱形的泡沫则选择PSA翘曲,有时是2K PU。圆柱形细胞具有杂化双固化的修饰丙烯酸或2K结构PU [2]。TCA的丙烯酸酯或2K PU配方具有技术陶瓷填充剂,以提高电阻率。结构框架粘结在汽车行业众所周知,可以将基于杂种环氧树脂的配方与糊状或膜相结合。粘合剂制造商在电动汽车电池组合中提供了多种粘合解决方案,尽管汽车行业除了粘合以外采用了多种连接技术。
1. Reyes‑Habito CM、Roh EK。化疗药物的皮肤反应和癌症的靶向治疗:第二部分。靶向治疗。J Am Acad Dermatol 2014;71:217.e1‑217.e11。2. Allegra CJ、Rumble RB、Hamilton SR、Mangu PB、Roach N、Hantel A 等。RL 扩展转移性结直肠癌的 RAS 基因突变检测以预测对抗表皮生长因子受体单克隆抗体疗法的反应:美国临床肿瘤学会。J Clin Oncol 2016;34:179。3. Coppola R、Santo B、Ramella S、Panasiti V。表皮生长因子受体抑制剂的新型皮肤毒性。一例接受西妥昔单抗治疗的转移性结直肠癌患者出现擦烂样皮疹。 Clin Cancer Investig J 2021;10:91-2 4. Lacouture ME。EGFR 抑制剂的皮肤毒性机制。Nat Rev Cancer 2006;6:803-12。5. Eilers RE Jr.、Gandhi M、Patel JD、Mulcahy MF、Agulnik M、Hensing T 等。接受表皮生长因子受体抑制剂治疗的癌症患者的皮肤感染。J Natl Cancer Inst 2010;102:47-53。6. Elmariah SB、Cheung W、Wang N、Kamino H、Pomeranz MK。系统性药物相关性间擦疹和屈侧皮疹 (SDRIFE)。Dermatol Online J 2009;15:3。 7. Weiss D、Kinaciyan T. 甲芬那酸诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE)。JAAD Case Rep 2019;5:89-90。8. Kumar S、Bhale G、Brar BK。氟康唑诱发的对称性药物相关性擦擦和屈侧皮疹 (SDRIFE):一种常用药物的罕见副作用。Dermatol Ther 2019;32:e13130。9. Li DG、Thomas C、Weintraub GS、Mostaghimi A. 强力霉素诱发的对称性药物相关性擦擦和屈侧皮疹。Cureus 2017;9:e1836。10. Moreira C、Cruz MJ、Cunha AP、Azevedo F. 对称性
电子和微电子在人们的生活中发挥着巨大的作用。笔记本电脑、手机和智能手表每天都陪伴着我们。科学和工业界做出了巨大的努力,使电子产品适应新的形状[1、2]和基底,使其功能更加强大。这种集成的主要方向之一是纺织集成电子产品(电子纺织品、可穿戴设备)[3]。这类电子产品必须保留传统电子系统的功能,同时满足新的、不寻常的要求,包括灵活性和可扩展性[4-6]。电子纺织品已经在医学[7]、体育[3]甚至日常使用[8]中进行了测试。生产纺织集成电子设备的潜在可能性之一是印刷电子方法,特别是喷墨[9]或丝网印刷[10]技术。利用这些技术,可以直接在织物或聚合物涂层织物上 [13] 打印电子元件,如电极 [11]、传感器 [12]、电互连线等。此外,已有报道将纺织品和电子元件与各向异性导电膜 ACF 相结合以实现电子纺织品 [14]。[15] 展示了纺织品上可清洗的丝网印刷天线。值得注意的是在纺织品上展示的喷墨打印石墨烯-银复合墨水 [16]。最后,用于可穿戴健康监测设备的纺织品上可清洗的石墨烯基印刷电极有望带来潜在的应用 [17]。上述文章的作者提到了需要克服的主要问题,即层的开裂和分层。迄今为止,尚未报道可清洗的接头。尽管文献中已经报道了各种印刷可拉伸电子设备,但仍有各种问题尚未解决 [18-20]。一个重要的
3M FC -75 4 4 4 4 1 1 2 1 乙酰胺 4 4 1 2 1 1 3 1 乙酸 (5%) 3 3 1 1 2 1 1 1 丙酮 1 2 1 1 3 1 3 3 苯乙酮 2 2 2 1 3 1 3 3 乙酰丙酮 2 2 2 1 3 1 3 3 乙酰氯 4 2 2 2 3 3 1 3 乙炔 3 2 1 1 1 1 1 2 空气 (100 °C) 1 2 1 1 1 1 1 空气 (150 °C) 1 2 1 1 3 3 1 3 空气 (200 °C) 1 2 1 1 3 3 1 3 乙酸铝4 4 4 4 2 1 3 2 溴化铝 4 4 4 4 1 1 1 1 氯化铝(10%) 3 3 3 3 1 1 1 1 氯化铝(100%) 3 2 2 2 1 1 1 1 氟化铝 3 3 3 3 1 1 1 1 硝酸铝 3 3 2 2 1 1 1 1 铝盐 4 4 4 4 1 1 1 1 硫酸铝 2 3 2 3 1 1 1 1 明矾(NH3-Cr-K) 4 4 4 4 1 1 3 1 氨(无水) 3 2 1 1 2 1 3 1 氨(冷,气体) 3 2 4 1 1 1 3 1 氨水(热、气态) 3 2 4 1 3 2 3 2 碳酸铵 3 2 3 3 3 1 1 1 氯化铵 2 3 2 3 1 1 1 1 氢氧化铵 3 3 1 2 3 1 3 1 硝酸铵 3 3 1 1 1 1 4 1 过硫酸铵溶液 3 3 1 2 3 1 4 4 磷酸铵(一元、二元、三元) 3 3 3 2 1 1 4 1 铵盐 4 4 4 4 1 1 3 1 硫酸铵 3 3 2 3 1 1 3 1 硼酸戊酯 4 4 4 4 1 3 1 1 戊基氯 4 2 1 1 4 3 1 2 戊基氯萘 4 4 4 4 3 3 1 3 戊基萘 4 4 4 4 3 3 1 3 动物油(猪油) 2 2 2 2 1 2 1 2 Aroclor 1248 2 3 3 3 3 2 1 3 Aroclor 1254 2 3 3 3 3 2 1 3 Aroclor 1260 2 3 3 3 1 4 1 1 芳族燃料 -50% 4 4 4 4 2 1 1 3 砷酸 3 3 1 1 1 2 1 1 沥青 3 3 1 1 2 3 1 2 ASTM 油,n° 1 1 1 1 1 1 3 1 1 ASTM 油,n° 2 1 1 1 1 1 3 1 2 ASTM 油,编号 3 1 1 1 1 1 3 1 3 ASTM 油,编号 4 1
蛋白水解靶向嵌合体 (PROTAC) 是异双功能分子,由两个配体组成;一个与 E3 泛素连接酶结合的“锚”和一个与目标蛋白结合的“弹头”,两者通过化学接头连接。PROTAC 靶向降解蛋白质已成为一种新的敲除一系列蛋白质的方式,首批药物目前已进入临床评估阶段。越来越明显的是,接头的长度和组成对 PROTAC 的物理化学性质和生物活性起着关键作用。虽然接头设计在历史上受到的关注有限,但 PROTAC 领域正在迅速发展,目前正在经历从易于合成的烷基和聚乙二醇到更复杂的功能接头的重要转变。这有望解锁大量具有增强生物活性的新型 PROTAC 药物,用于治疗干预。在这里,作者及时概述了已发表文献中的各种接头类别,以及它们的基本设计原则和对相关 PROTAC 的性质和生物活性的总体影响。最后,作者对 PROTAC 组装的当前策略进行了批判性分析。作者强调了与接头设计和选择相关的传统“反复试验”方法的重要局限性,并提出了未来的潜在途径,以进一步指导合理的接头设计并加速优化 PROTAC 的识别。特别是,作者认为计算和结构方法的进步将在更好地理解 PROTAC 三元复合物的结构和动力学方面发挥重要作用,并且对于解决与 PROTAC 设计相关的当前知识空白至关重要。