R&S®FSMR 与新的 R&S®FS-K15 选件配合使用,可节省大量时间。它可对用于测试机载设备的导航/通信测试仪的传输信号进行完整且高度精确的校准。除了特殊的 VOR/ILS 信号外,它还可校准一般幅度、频率或相位调制信号,并以极高的精度测量发生器的输出电平。事实上,它的精度非常好,甚至可以测试诸如 R&S®SMA 之类的信号发生器,该信号发生器与 R&S®SMA-K25 选件配合使用,作为用于无线电导航接收机测试的高精度信号源。
3. SBSP 的典型发电水平和距离是多少,包括发射机到接收机和轨道考虑因素?SBSP 的典型发电水平和距离是评估可行性的关键考虑因素。不同概念的发电水平各不相同,估计范围从 100 兆瓦到 2 千兆瓦。地球静止轨道(圆形)和闪电轨道(高椭圆形)都是合适的选择。地球静止定位需要先进的发射能力才能达到约 35,800 公里(22,300 英里)的固定高度,但具有太阳能发电能力系数超过 99% 的优势。对于实际应用,由于在穿过大气层传输时会损耗电力,因此在太空中发电千兆瓦级被认为是必要的。出于成本和可行性考虑,中地轨道成为更实际的选择。
同时发送和接收相同频率的无线信号已被认为是缓解频谱资源稀缺的一种颇具吸引力的方法 [1]。这是通过实现 IBFD 与现有技术相比可能实现的两倍频谱效率来实现的。此外,IBFD 还为电子战领域的同时多功能前端天线系统带来了机遇 [2]。IBFD 面临的主要挑战是自干扰 (SI),即从发射机泄漏到其自身共定位接收机的自干扰 [3]。大多数系统需要非常高水平的自干扰消除 (SIC) 才能正常运行。通常,为了实现预期的 110-130 dB SIC,如图 1 所示,在三个级别实现消除:射频或天线、模拟和数字 [4]-[5]。
应答器测试规格 测试装置发射机 输出频率 1030 MHz / ±10 KHz 输出功率 –20 至 –100 / ±1 dBm (DC) 0 至 -100 dBm / ±1 dBm (天线) 询问 PRF 直接连接 SIF 450 ± 5 Hz 模式 S 短字 45-50 Hz 模式 S 长字 13-16 Hz 模式 5 200-225 Hz 天线连接 SIF 235 ± 5 Hz 模式 S 短字 45-50 Hz 模式 S 长字 13-16 Hz 模式 5 200-225 Hz 测试装置接收机 测量范围 1086.5 至 1093.5 MHz 测量精度 ±200 KHz 功率测量范围 47 至 64 dBm 测量精度 ±2 dB (DC) ±2 dB (天线) 灵敏度测量范围 -45 至 -87 dBm (DC) -49至 -81 dBm (天线) 测量精度 ±2 dB (DC) ±3 dB (天线) 应答效率测量范围 0 至 100%
针对强 AM 干扰信号的交叉调制免疫力 当具有幅度调制 (AM) 的强干扰信号过载接收机的输入放大器或第一个混频器时,就会发生交叉调制。这种类型的串扰问题在很大程度上与有用信号的强度无关。当飞机靠近被呼叫的 ATC 站时,也会出现这种影响。R&S®MR6000A 可以轻松应对此类挑战,因为它是基于 ARINC 716 US 标准开发的,该标准规定了 VHF 机载收发器的高交叉调制免疫力。因此,收发器可以容忍 +10 dBm 级别的干扰信号,例如,与接收频率偏移 500 kHz,远远超过了标准的要求(交叉调制免疫力数字)。
第二节 — 导航系统 ................................................................................................ 7-3 无方向性无线电信标 .............................................................................................. 7-3 频率 ................................................................................................................ 7-3 自动测向仪 ............................................................................................................ 7-3 罗盘定位器 ............................................................................................................ 7-4 语音传输 ................................................................................................................ 7-4 识别 ...................................................................................................................... 7-4 精度 ...................................................................................................................... 7-4 干扰 ...................................................................................................................... 7-5 甚高频全向范围 ................................................................................................ 7-5 战术空中导航操作理论 ........................................................................................ 7-8 甚高频全向范围/战术空中导航 ........................................................................................ 7-9 测距设备 ................................................................................................................ 7-9 全球定位系统 ........................................................................................................ 7-10 信号精度 ................................................................................................................ 7-10 段 ........................................................................................................................ 7-11 导航数据库 ................................................................................................ 7-11 美国国家空域系统之外 .............................................................................. 7-11 接收机自主完整性监测 ................................................................................ 7-11 数据库要求 ................................................................................................ 7-11 手动数据库操作 ............................................................................................. 7-12 嵌入式全球定位系统/惯性导航系统 ............................................................. 7-12 航向灵敏度 ............................................................................................................. 7-12 广域增强系统 ............................................................................................. 7-12 局域增强系统 ............................................................................................. 7-13 惯性导航系统 ............................................................................................. 7-13
摘要 — 多波段相干通信被视为一种有希望的候选技术,可满足日益增长的更高数据速率和容量需求。同时,相干通信有望在不久的将来进入数据中心领域。随着数据和电信领域的相干数据链路跨越多个光波段,相干收发器设计和流量工程的新方法将成为必需。在本文中,我们提出了一种用于 O 波段和 C 波段的单片集成硅光子相干接收器。该接收器采用 2×2 多模干涉耦合器网络,作为针对 1430 nm(E 波段)优化的 90 ◦ 混合。总功耗为 460 mW,占地面积约为 6 mm 2,光电带宽为 33 GHz。 64 GBd 操作在 O 波段和 C 波段上得到演示,这与 C 波段最先进的硅光子相干接收机相比具有竞争力,并且是 O 波段相干通信迄今为止的最高符号率。
摘要 — 本文讨论了一种基于三级改进型反相器结构的多级互阻抗放大器 (TIA)。通过添加两个级联晶体管,传统反相器结构的性能得到了改善。与传统反相器相比,这种新结构的优点是消除了米勒电容,可以提供更高的速度和更宽的频率带宽。除了使用 G m / ID 技术外,本文还权衡了带宽、增益和功耗之间的平衡,介绍了一种用于光通信接收机系统中高比特率的低功耗互阻抗放大器。此外,还使用了有源电感器来减少占用面积并增加频率带宽。将改进电路的极点转移到更高的频率意味着在固定带宽范围内所需的直流电流更少,从而实现低功耗特性
2020 年 7 月,NASA 选择月球 GNSS 接收机实验 (LuGRE) 作为 CLPS 任务订单 19D 的第 10 个有效载荷 [17]。2021 年 2 月,NASA 将任务订单 19D 授予 Firefly Aerospace。Firefly 的蓝色幽灵任务 1 (BGM1) 将把 LuGRE 和其他 CLPS 19D 有效载荷运送到月球危海的 18.6° N、61.8° E。LuGRE 旨在首次在 30 RE 以上的高度演示基于 GNSS 的导航,也是首次在月球表面使用 GNSS。LuGRE 科学目标的实现将扩大可用 GNSS 信号的已证实覆盖范围。后续任务将能够利用 LuGRE 数据和经验教训在月球区域内实现 GNSS 的运行,为探索月球的航天器增加一个现有的、经过验证的实时导航源。 2 卢格雷科学目标