大于 0.1 m,无论是平面化还是未平面化的测试 µ 芯片。凸块侧壁略微倾斜,因此凸块的平面化会略微增加凸块面积,见表 2。平面化工艺似乎还会使软金凸块略微变脏,见图 4。平面化凸块的凸块面积比未平面化凸块大 5% 到 15%。
有机半导体已用于各种电子设备,包括有机发光二极管 (OLED)、[1] 有机太阳能电池、[2] 有机光电探测器 [3] 和各种形式的有机晶体管 [4–7]。所有这些设备的根本要求是在有机半导体和电触点之间的界面上高效地注入和/或提取电荷。[8] 因此,对实现高效电荷注入/提取所需的活性材料和设备工程的广泛研究和开发对于实现 OLED 的商业化等至关重要。该领域的进展现已达到这样的程度,即与有效载流子和激子限制、能量转移、外耦合和寿命等其他方面相比,电荷注入和提取并不是限制 OLED 最新技术发展的最关键问题。 [9–12] 有机太阳能电池也是如此,最近其主要关注点和改进源泉与非富勒烯受体的开发更加紧密地联系在一起。[13] 另一方面,各类有机晶体管多年来一直被吹捧为新型大面积集成电路应用领域中基于无机半导体的晶体管的主要替代品,[14,15] 但尚未在消费电子产品中得到广泛采用。与无机晶体管相比,有机晶体管的几个缺点,例如电荷载流子迁移率通常较低、器件均匀性较差、可靠性降低[16],随着时间的推移,这些缺点已经得到显着改善,因此现在一些利用有机薄膜晶体管 (TFT) 的商用器件已经面世。[17] 然而,接触电阻 (RC) 仍然是进一步开发基于有机晶体管的电路的主要障碍。 [18–21] 对于低功耗、高频应用(如移动有源矩阵显示器)的有机 TFT 的开发尤其如此,因为高 RC 限制了通过器件小型化可以实现的最大单位电流增益截止(传输)频率。[22] 尽管在扩展有机 TFT 的宽度和性能方面取得了重大进展,但有机 TFT 中的高接触电阻仍然是一个主要问题
太阳能灶是一种利用太阳能加热食物以进行烹饪的设备。太阳能烹饪可用于减少传统燃料的使用并提高食物质量。太阳能灶必须处理通过吸收板金属部件和食物容器接触的高浓度热流。对于热传递,接触热阻起着重要作用,降低接触点的热阻是主要关注点。在目前的研究中,通过结合接触电阻对轻质、节能的箱式太阳能灶进行了数学建模。开发了一种实验装置来找出接触热阻,并评估了铝材料表面粗糙度为 0.2 Ra 和 0.8 Ra 时的接触热阻。对灶具进行了性能测试以获得性能系数 F 1 和 F 2 。此外,还对表面粗糙度为 0.8 和 0.2 Ra 的测得的热接触阻进行了负载测试。对于 0.2 Ra 的表面粗糙度,考虑接头处热阻时观察到的 % 误差分别为 19.77%、13.69%、13.68%,不考虑接头处热阻时观察到的 % 误差分别为 −42.89%、18.95% 和 16.37%。对于 0.8 Ra 的表面粗糙度,考虑接头处热阻时观察到的偏差分别为 23.09%、17.52%、13.5%,不考虑接头处热阻时观察到的偏差分别为 −42.89%、18.95% 和 16.37%。计算得出的品质因数 F 1 为 0.12,而商用炊具的品质因数为 0.11,这表明新设计的炊具具有更高的光学效率。计算得出的品质因数 F 2 为 0.42,而商用炊具的品质因数为 0.38。因此,结果强调了热接触阻非常重要,在建模时应予以考虑。
摘要 金属-石墨烯接触电阻是限制石墨烯在电子设备和传感器中技术开发的主要因素之一。高接触电阻会损害器件性能并破坏石墨烯固有的优良特性。在本文中,我们制造了具有不同几何形状的背栅石墨烯场效应晶体管,以研究接触和沟道电阻以及载流子迁移率随栅极电压和温度的变化。我们应用传输长度法和 y 函数法,表明这两种方法可以相互补充以评估接触电阻并防止在估计载流子迁移率对栅极电压的依赖性时出现伪影。我们发现栅极电压以类似的方式调节接触和沟道电阻,但不会改变载流子迁移率。我们还表明,升高温度会降低载流子迁移率,对接触电阻的影响可以忽略不计,并且可以根据施加的栅极电压诱导石墨烯薄层电阻从半导体行为转变为金属行为。最后,我们表明,消除接触电阻对晶体管沟道电流的不利影响几乎可以使载流子场效应迁移率翻倍,并且通过 Ni 接触的锯齿形成形可以实现低至 700 Ω · μ m 的竞争性接触电阻。
我们研究了 SiC (0001) 上 Ti / Au 与单层外延石墨烯的接触,以用于量子电阻计量。使用量子霍尔范围内的三端测量,我们观察到接触电阻的变化范围从最小值 0.6 Ω 到 11 k Ω 。我们发现高电阻接触的主要原因是双层石墨烯对量子霍尔电流的干扰,同时忽略了界面清洁度和接触几何形状对我们制造的设备的影响。此外,我们通过实验展示了提高低电阻接触(< 10 Ω)可重复性的方法,适用于高精度量子电阻计量。C 2015 作者。除非另有说明,否则所有文章内容均根据知识共享署名 3.0 未移植许可证获得许可。[http://dx.doi.org / 10.1063 / 1.4928653]
摘要:对未来电子应用的原子较薄的半导体对单层(1L)硫属(例如MOS 2)(例如化学蒸气沉积(CVD)生长)非常关注。然而,关于CVD生长的硒的电性能,尤其是Mose 2的报告很少。在这里,我们比较了CVD生长的1L和BiLayer(2L)Mose 2的电性能,并由子材料计的ALO X封顶。与1L通道相比,2L通道表现出约20倍较低的接触电阻(R C)和〜30倍的电流密度。r c通过ALO X封盖进一步降低> 5×,这可以提高晶体管电流密度。总体而言,2L ALO X盖的Mose 2晶体管(约500 nm的通道长度)可提高电流密度(在V DS = 4 V时约为65μM /μm),良好的I ON / I ON / I ON / I ON / I OFF> 10 6,R C为约60kΩ·μm。 1L设备的性能较弱是由于它们对处理和环境的敏感性。我们的结果表明,在不需要直接带隙的应用中,2L(或几层)比1L更可取,这是对未来二维电子产品的关键发现。关键字:丙象钼,单层,双层,接触电阻,晶状体效应晶体管,氧化物封盖,掺杂,2D半导体
• 接触电阻在 1 分钟内迅速减小。然后在接下来的一个小时内逐渐减小。• 如果随后关闭开关并重复测试,则新的起始电阻会更低。• 如果关闭开关并保持关闭状态。下次打开时,接触电阻会再次升高。• 与 MEMS 开关的文献一致。• 注意:即使最高的接触电阻仍然相对较低(小于 2 欧姆)。
摘要:高接触电阻一直是开发高性能过渡金属二硫属化物 (TMD) 基 p 型晶体管的瓶颈。我们报道了简并掺杂的少层 WSe 2 晶体管,其接触电阻低至 0.23 ± 0.07 k Ω·μ m/接触,其使用氯化铂 (IV) (PtCl 4 ) 作为 p 型掺杂剂,该掺杂剂由与互补金属氧化物半导体 (CMOS) 制造工艺兼容的离子组成。栅极长度为 200 nm 的顶栅器件表现出良好的开关行为,这意味着掺杂剂扩散到栅极堆栈中并不显著。这些器件在空气中放置 86 天后未进行任何封装,同时在 78 K 温度下保持简并掺杂状态,且压力低于 10 − 5 Torr,突显了掺杂剂的稳定性。所提出的方法阐明了对具有减薄肖特基势垒宽度的晶体管进行图案掺杂以获得低接触电阻器件的高稳定性方法的可用性。关键词:二硒化钨、电荷转移掺杂、场效应晶体管、二维材料、高稳定性
散热器:固有块体材料特性 – 通常为铝或铜(散热器、液冷板、蒸气室) TIM2:半导体封装外部;θ T2 由材料电阻决定,该电阻包括块体值加上 (2) 接触电阻(外壳表面、散热器) 外壳(或盖子):固有块体材料特性 – 通常为镀镍铜* TIM1:半导体封装内部;θ T1-C 由材料电阻决定,该电阻包括块体值加上 (2) 接触电阻(芯片表面、盖子内表面);或者, TIM0:无盖半导体封装(“裸片”封装) 芯片:固有块体材料特性(Si、SiC、GaN、GaAs 等)