多端器件的等效电路模型 [1] 已被用于探索 R H (量化霍尔电阻 (QHR))测量中的负载和接触电阻效应。主要观察结果是,由于强磁场中 QHR 器件 [2] 的接触(储层)和边缘状态之间的有效串联源电阻 r s = R H /2,从霍尔电压端子抽取的电流会导致显着的负载误差。1993 年,这些原理的计量应用通过在两个或多个器件之间设计具有多个链路的电路而建立 [3]。第一个链路承载大部分电流并在每个设备上设置等势边缘,因此霍尔电压互连具有小得多的负载电流。因此,在 QHARS 网络中,负载和直流接触电阻效应可以降低到可忽略不计的水平。同样,多重连接可最大限度地减少寄生负载对单个设备阻抗测量的影响,音频范围内 QHR 标准的开发也基于这一进步。
当前项目:• 接受电化学技术培训以及表征技术的使用,例如电感耦合等离子体质谱 (ICP-MS)、Agilent 7500 • 使用 ICP-MS 分析在 LANL 进行腐蚀试验后获得的溶液,这将指出可能导致腐蚀试验后产生不同结果的不同元素 • 在 LANL 实习期间,我曾使用过 ICP-MS、界面接触电阻 (ICR) 和电化学
摘要 — 碳纳米材料、石墨烯和碳纳米管 (CNT) 已成为未来先进封装技术集成的有前途的材料。碳纳米材料的主要优点包括出色的电性能、热性能和机械性能。在本文中,成功实现了顶部石墨烯层到原生 CNT 束的转移过程,界面处直接实现石墨烯与 CNT 接触。四点探针 (4PP) I – V 特性表明石墨烯和 CNT 之间实现了欧姆接触。在 90 000 μ m 2 CNT 面积(包括 CNT-石墨烯接触电阻)中获得了 2.1 的低 CNT 凸块电阻,表明在相同的制造和测量条件下 CNT 和 Au 之间的接触电阻降低。这项工作展示了顶部转移石墨烯在碳纳米管上的组装过程以及碳纳米管-石墨烯直接接触的电学特性的初步结果,为实现全碳基三维(3-D)互连铺平了道路。
摘要:电气接触材料越来越广泛地使用,但是现有的电动接触润滑剂仍然有很大的改进空间,例如抗衣性能和润滑寿命。由于出色的电气和润滑性能,石墨烯在润滑滑动电触点界面方面具有巨大的潜力,但缺乏相关的研究。一些研究人员研究了石墨烯在超低电流下涂有金色/锡涂层摩擦对之间的润滑性能。然而,尚未报道石墨烯在更广泛使用的电气接触材料上的润滑性能,例如铜及其合金在较大,更常用的电流或电压条件下。在本文中,我们研究了铜中石墨烯及其合金在常规参数下滑动电触点界面的润滑性能,这是通过四个方面探索的:不同的基板 - copper和brass,不同的测试方法,不同的测试方法 - 恒定伏特和恒定的电流和恒定电流,不同的正常负载和耐用性测试。实验表明,在上述测试方法和参数下,石墨烯可以显着减少黄铜和铜的摩擦和磨损,同时具有低接触电阻。我们的工作有望为电接触材料提供一种新的润滑剂,并有助于丰富石墨烯的摩擦学理论。关键字:石墨烯;滑动电触点;铜;减少摩擦;反衣低接触电阻
一般说明 簧片开关是 1936 年由 W. B. Ellwood 博士在贝尔电话实验室发明的。1938 年簧片开关首次得到应用,当时用作同轴载波设备中的选择开关。后来,随着电信技术的发展,簧片开关也得到了改进。同时,簧片开关的优点(例如响应时间快、触点密封、尺寸小和机械寿命长)极大地促进了电信技术的发展。从 1956 年日本开始研究和开发簧片开关以来,在提高触点性能、减小整体尺寸、改进制造方法和降低制造成本方面取得了创新。除了在开关系统中的应用外,簧片开关还被广泛应用于汽车电气设备、簧片继电器和其他各类仪器中的传感器和控制器。我们的簧片开关质量极佳,是基于我们自己独创的接触面钝化技术、高性能自动密封设备和使用磁通量扫描测试(FS 方法)的接触电阻测量技术制造的。特别是,我们的接触面钝化工艺解决了传统铑接触簧片开关的致命问题,并抑制了由于有机物引起的接触电阻的增加
本文介绍了法国Villeurbanne的Laboratoire deLaMatière,法国Villeurbanne摘要:对Ni-Al合金的调查,在本文中介绍了在P型4H-SIC上形成欧姆的接触。检查了Ni/Al接触的几个比例。在1分钟内在400°C的氩气气氛中进行快速热退火,然后在2分钟内在1000°C下退火。为了提取特定的接触电阻,制造了传输线方法(TLM)测试结构。在p型层上可重复获得3×10-5Ω.cm2的特定接触电阻,而N a = 1×10 19 cm -3的掺杂,由Al 2+离子植入进行。测得的最低特异性接触电阻值为8×10-6Ω.cm2。引言硅碳化物是一种半导体,它在硅中具有多种优越的特性,例如宽带镜头三倍,高电场强度(六倍),具有铜和高电子饱和度漂移速度的高热电导率。由于SIC单晶生长晶粒已被商业化,因此在SIC应用中进行了深入的研究[1],用于高温,高频和高功率设备。半导体设备参数控制开关速度和功率耗散的强大取决于接触电阻[2]。为制造高性能的SIC设备,开发低阻力欧姆接触是关键问题之一。目前正在限制SIC设备的性能,特别是因为与P型材料接触[3-7]。这些接触通常采用铝基合金[3,7]。已经研究了许多不同的解决方案,并且非常关注Ti/al [3-5],该溶液在p -SIC上产生了10 -4-10-5Ω.cm2的特定接触电阻。最近通过使用诸如TIC [6]的替代材料(诸如TIC [6]的替代材料产生改进的接触的尝试,导致了低于1×10-5Ω.cm2的特定接触电阻,但是这些接触需要“外来”材料和非标准制造技术。另一方面,一些调查集中在接触Ni/Al [7,8]上,优势是形成欧姆行为无论构成不管构成。在本文中,通过不同的参数提出并讨论了p-SIC上Ni/Al欧姆接触的形成。用不同的参数实现了一组样品。善良的注意力首先集中在表面制备上,尤其是有或没有氧化的情况。然后,研究并讨论了触点中的特定电阻与AL含量。最后,也分析了退火序列的效果。使用标准的梯形热处理特征用于1000°C的退火,然后通过在400°C的中间步骤添加1分钟进行修改。实验样品是4H-SIC N型底物,其n型表层掺杂以10 15 cm -3的掺杂,从Cree Research购买。通过浓度为n a = 1×10 19 cm -3的Al 2+离子植入获得P型区域。在Argon Ambient下,在45分钟内在1650°C下进行射入后退火[9]。首先在溶剂中清洁样品,然后再清洗“ Piranha”溶液。冲洗后,将RCA清洁应用于样品,然后将它们浸入缓冲氧化物蚀刻(BOE)中。清洁后,立即在1150°C的干氧中生长了SIO 2层2小时。光刻来定义传输线方法(TLM)模式,并在将样品引入蒸发室之前就打开了氧化物。Ni的接触组成,然后通过电阻加热沉积AL。最终通过升降过程获得了TLM触点。仅在几分钟内在1000°C下在1000°C下在Argon大气下进行退火后才能建立欧姆接触的形成。
摘要:金属与其导电通道之间的有效欧姆接触是开发高性能Ga 2 O 3 基晶体管的关键步骤。与块体材料不同,退火过程中多余的热能会破坏低维材料本身。考虑到热预算问题,提出了一种可行且温和的解决方案(即含氩气的等离子体处理)来实现与(100)β-Ga 2 O 3 纳米片的有效欧姆结。首次用X射线光电子能谱比较研究了四种等离子体处理(即混合气体SF 6 /Ar,SF 6 /O 2 /Ar,SF 6 /O 2 和Ar)对(100)β-Ga 2 O 3 晶体的影响。通过最佳等离子体预处理(即氩等离子体,100 W,60 s),所得的 β -Ga 2 O 3 纳米片场效应晶体管(FET)无需任何后退火即可表现出有效的欧姆接触(即接触电阻 RC 为 104 Ω·mm),从而可获得具有竞争力的器件性能,例如高电流开/关比(> 10 7 )、低亚阈值摆幅( SS ,249 mV/dec)和可接受的场效应迁移率( µ eff ,~21.73 cm 2 V − 1 s − 1 )。通过使用重掺杂的 β -Ga 2 O 3 晶体(N e ,~10 20 cm − 3 )进行氩等离子体处理,接触电阻 RC 可进一步降低至 5.2 Ω·mm。这项工作为增强低维Ga2O3基晶体管的欧姆接触性能开辟了新的机会,并可进一步使其他基于氧化物的纳米器件受益。
为了降低数据写入的能量消耗,迫切需要开发新型存储材料。为了开发用于非挥发性存储器(如存储级存储器)的具有极低操作能量的新型相变材料 (PCM),我们通过数值模拟对 PCM 的物理特性进行了贝叶斯优化。在该数值模拟中,同时求解了电势和温度分布。研究发现,具有低热导率、低熔化温度以及低接触电阻与体积电阻之比的 PCM 会导致基于 PCM 的存储器应用的操作能量较低。最后,我们开发了 PCM 的设计策略。应通过降低操作能量 E 来开发新型 PCM,描述为 E = j (1 + C ) DT / D z ,其中 j 是 PCM 的热导率,DT 是熔化温度,C 是接触电阻与体积电阻之比,D z 是 PCM 的厚度。本研究结果阐明了热性能和电性能之间的关系,从而降低了以前研究中隐藏的操作能量。根据设计策略,与传统的 Ge-Sb-Te 化合物相比,相变存储器应用中的操作能量可以降低到 1/100 以下。2022 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可证开放获取的文章(http://creativecommons.org/licenses/by/4.0/)。