脑类器官是模拟大脑某些三维 (3D) 细胞结构和功能方面的重要模型。能够记录和刺激电生细胞活动的多电极阵列 (MEA) 为研究脑类器官提供了显著的潜力。然而,传统的 MEA 最初是为单层培养而设计的,记录接触面积有限,仅限于 3D 类器官的底部。受脑电图帽形状的启发,我们开发了用于类器官的微型晶圆集成 MEA 帽。光学透明的外壳由自折叠聚合物小叶和导电聚合物涂层金属电极组成。通过力学模拟指导的微型胶囊聚合物小叶的可调折叠,可以实现对不同大小的类器官进行多功能记录,并且我们验证了对 400 至 600 m 大小的类器官进行长达 4 周的电生理记录以及对谷氨酸刺激的反应的可行性。我们的研究表明,3D 壳 MEA 为高信噪比和 3D 时空脑类器官记录提供了巨大潜力。
核黄素-5-磷酸 (RF) 是角膜交联 (CXL) 中最常用的光敏剂,但其亲水性和负电荷限制了其穿透角膜上皮进入基质。为了增强 RF 对角膜的通透性并提高其在圆锥角膜治疗中的疗效,以 ZIF-8 纳米材料为载体制备了新型芙蓉状 RF@ZIF-8 微球复合材料 [6RF@ZIF-8 NF (纳米片)],其特点是疏水性、正电位、生物相容性、高负载能力和大表面积。苏木精和伊红内皮染色和 TUNEL 分析均证明 6RF@ZIF-8 NF 具有良好的生物相容性。在体内研究中,6RF@ZIF-8 NF 表现出优异的角膜渗透性和出色的跨上皮 CXL (TE-CXL) 功效,略优于传统 CXL 方案。此外,6RF@ZIF-8 NF 的特殊芙蓉状结构意味着它比 6RF@ZIF-8 NP(纳米颗粒)具有更好的 TE-CXL 功效,因为与上皮的接触面积更大,RF 释放通道更短。这些结果表明 6RF@ZIF-8 NF 有望用于跨上皮角膜交联,避免上皮清创的需要。
摘要:在这项研究中,通过模拟的深海摩擦和磨损测试系统研究了不同静水压力(0.1-60 MPa)下多层石墨样碳(GLC)涂层的摩擦学行为和机制。透明的摩擦界面的形态和组成被彻底表征。调查结果表明,在静水压力升高或重负荷条件下,摩擦系数(COF)更大(但未超过0.02)。GLC涂层主要经历磨料磨损,并且磨损程度随着静水压力和负荷的增加而增强。摩擦界面的石墨化和基于硅的润滑产物的生产变得越来越明显。因此,通过改变摩擦接触表面的状态来实现静水压力对GLC涂层摩擦性能的影响。本质上,静水压力通过产生额外的压缩负荷来修饰摩擦对的实际接触面积,以使静水压力的增加对施加载荷的增加具有相似的影响。随着静水压力和施加载荷的增加,摩擦对表面上磨损平滑的趋势变得更加明显。在摩擦过程中生成的石墨转移膜和基于硅的材料改善了摩擦对的润滑性能,从而导致摩擦对磨损极低。
1 阿尔托大学微纳米科学系,Micronova,Tietotie 3,02150,埃斯波,芬兰 2 联邦物理技术研究院,Bundesallee 100,38116 不伦瑞克,德国 3 MIKES,Tekniikantie 1,FI-02150,埃斯波,芬兰 电子邮件:novikov@aalto.fi,alexandre.satrapinski@mikes.fi 摘要 — 基于在 SiC 上生长的外延石墨烯膜的量子霍尔效应 (QHE) 器件已被制造和研究,以开发 QHE 电阻标准。霍尔器件中的石墨烯-金属接触面积已得到改进,并使用双金属化工艺制造。测试器件的初始载流子浓度为 (0.6 - 10)·10 11 cm -2,在相对较低的 (3 T) 磁场下表现出半整数量子霍尔效应。光化学门控方法的应用和样品的退火为将载流子密度调整到最佳值提供了一种方便的方法。在中等磁场强度 (≤ 7 T) 下对石墨烯和 GaAs 器件中的量子霍尔电阻 (QHR) 进行精密测量,结果显示相对一致性在 6 · 10 -9 范围内。索引术语 - 外延石墨烯、石墨烯制造、接触电阻、精密测量、量子霍尔效应。
摘要:深度学习 (DL) 算法在无损评估 (NDE) 中的应用正成为该领域最有吸引力的主题之一。作为对此类研究的贡献,本研究旨在研究 DL 算法在使用激光超声技术检测和评估螺栓接头松动度方面的应用。本研究基于关于螺栓头板真实接触面积与超声波穿过时损失的导波能量之间关系的假设进行。首先,分别使用 Q 开关 Nd:YAG 脉冲激光器和声发射传感器作为激励和感应超声信号。然后,使用超声波传播成像 (UWPI) 过程创建 3D 全场超声数据集,之后应用多种信号处理技术来生成处理后的数据。通过使用基于 VGG 类架构的回归模型的深度卷积神经网络 (DCNN),计算估计误差以比较 DCNN 在不同处理数据集上的性能。还将所提出的方法与 K 最近邻、支持向量回归和深度人工神经网络进行了比较,以证明其稳健性。因此,发现所提出的方法显示出结合激光生成的超声波和 DL 算法的潜力。此外,信号处理技术已被证明对自动松动估计的 DL 性能具有重要影响。
金属磷化物纳米带因特殊的电子结构、大的接触面积和优异的力学性能而成为柔性光电子微器件的理想构建材料。本工作采用拓扑化学方法从结晶红磷纳米带(cRP NR)制备单晶磷化铜纳米带(Cu 3 P NR)以保留 cRP 形貌。Cu 3 P NR 用于在 ITO/PEN 基底上构建柔性光电忆阻器,以 Cu 3 P NR 的天然氧化壳作为电荷捕获层来调节电阻开关特性。基于 Cu 3 P NR 的忆阻器在不同机械弯曲状态和不同弯曲时间下均具有出色的非挥发性存储性能。从基于 Cu 3 P NR 的忆阻器中观察到光学和电学调制的人工突触功能,并且由于记忆回溯功能,使用 Ag/Cu 3 P/ITO 人工突触阵列实现了模式识别。拓扑化学合成法是一种通用方法,可用于生产具有特殊形态和特定晶体取向的纳米结构化合物。结果还表明,金属磷化物是未来光电神经形态计算的忆阻器中的优良材料。
摘要 — 超宽带隙氧化镓 (Ga 2 O 3 ) 器件最近已成为电力电子领域的有希望的候选者;然而,Ga 2 O 3 的低热导率 (k T ) 引起了人们对其电热稳定性的严重担忧。这项工作首次实验演示了采用底部冷却和双面冷却配置封装的大面积 Ga 2 O 3 肖特基势垒二极管 (SBD),并首次表征了这些封装 Ga 2 O 3 SBD 的浪涌电流能力。与普遍看法相反,采用适当封装的 Ga 2 O 3 SBD 表现出很高的浪涌电流能力。具有 3×3 mm 2 肖特基接触面积的双面冷却 Ga 2 O 3 SBD 可以承受超过 60 A 的峰值浪涌电流,峰值浪涌电流与额定电流之比优于同等额定值的商用 SiC SBD。这种高浪涌电流的关键促成机制是导通电阻的温度依赖性小,这大大降低了热失控,以及双面冷却封装,其中热量直接从肖特基结提取,不需要通过低 k T 块状 Ga 2 O 3 芯片。这些结果消除了有关 Ga 2 O 3 功率器件电热耐用性的一些关键担忧,并体现了其芯片级热管理的重要性。1
复制蛋白A(RPA)是单个链DNA(ssDNA)结合蛋白,可协调各种DNA代谢过程,包括DNA复制,修复和重组。RPA是一种异三聚体蛋白,具有六个功能性寡糖/寡核苷酸(OB)结构域和柔性接头。 灵活性使RPA能够采用多种配置,并被认为可以调节其功能。 在此,使用单分子共焦荧光显微镜与光学镊子和粗粒细粒的分子动力学模拟结合使用,我们研究了在张力下ssDNA上单个RPA分子的扩散迁移。 在3 pn张力和100 mM KCl时,扩散系数D是最高(20,000个核苷酸2 /s),当张力或盐浓度增加时,则显着降低。 我们将张力效应归因于段转移,这受到DNA拉伸和盐效应的阻碍,降低了RPA-SSDNA的结合位点大小和相互作用能量的增加。 我们的综合研究使我们能够估计通过通过RPA上多个结合位点在DNA上的遥远位点的短暂桥接发生的细胞分段转移事件的大小和频率。 有趣的是,RPA三聚芯的删除仍然允许大量的ssDNA结合,尽管降低的接触面积使RPA的移动性增加了15倍。 最后,我们表征了RPA拥挤对RPA迁移的影响。 这些发现揭示了如何重塑高亲和力RPA-SSDNA相互作用以产生访问,这是多个DNA代谢过程中的关键步骤。RPA是一种异三聚体蛋白,具有六个功能性寡糖/寡核苷酸(OB)结构域和柔性接头。灵活性使RPA能够采用多种配置,并被认为可以调节其功能。在此,使用单分子共焦荧光显微镜与光学镊子和粗粒细粒的分子动力学模拟结合使用,我们研究了在张力下ssDNA上单个RPA分子的扩散迁移。在3 pn张力和100 mM KCl时,扩散系数D是最高(20,000个核苷酸2 /s),当张力或盐浓度增加时,则显着降低。我们将张力效应归因于段转移,这受到DNA拉伸和盐效应的阻碍,降低了RPA-SSDNA的结合位点大小和相互作用能量的增加。我们的综合研究使我们能够估计通过通过RPA上多个结合位点在DNA上的遥远位点的短暂桥接发生的细胞分段转移事件的大小和频率。有趣的是,RPA三聚芯的删除仍然允许大量的ssDNA结合,尽管降低的接触面积使RPA的移动性增加了15倍。最后,我们表征了RPA拥挤对RPA迁移的影响。这些发现揭示了如何重塑高亲和力RPA-SSDNA相互作用以产生访问,这是多个DNA代谢过程中的关键步骤。
过渡金属基电极材料具有大的比表面积和多孔结构,可以为氧化还原反应暴露更多的电活性位点,并提供电极和电解质之间的大接触面积。18-20多级多孔纳米结构不仅提供更多的活性位点,而且还提供快速的电极/电解质相互作用和离子传输/电子交换,从而提高功率密度和倍率能力。21,22此外,基于对电荷存储机制的理解,探索了多价金属阳离子之间的协同效应。复合材料的组成协同作用可以使电极中的离子和电荷轻松转移,从而确保更丰富的氧化还原反应。 22 – 25此外,人们付出了巨大的努力来设计各种三元和四元过渡金属基电极,这些电极已被证明与单金属氧化物相比具有金属导电性、更丰富的氧化还原反应位点和电化学稳定性等显著优势。26 – 30最后,粉末状电极材料机械不稳定,其电导率通常太低,无法快速充电 – 放电。由于电解质扩散到电极中的距离短,只有材料表面对总电容有有效贡献。设计无添加剂的电极材料,直接在导电多孔基底上生长(如泡沫镍),不仅可以提高导电性和电极中电解质的丰富度,还可以提高电极的稳定性。
气泡在沸腾过程中的成核、生长、聚结和脱离是影响传热和散热性能的重要现象。观察气泡行为是理解沸腾传热机理的重要方法。本研究了单个气泡在 SiO 2 涂层表面从不同直径的孤立人工空腔中成核和脱离的动力学。实验在 FC-72 中进行,饱和压力从 0.75 bar 到 1.75 bar。使用高速摄像机研究了气泡在成核过程中的行为。在完整的气泡生长期内,FC-72 气泡呈球形。在初始生长期后,它与沸腾表面的唯一接触是通过我们所说的狭窄的“蒸汽桥”。接触面积的大小受空腔直径的影响:空腔口越大,气泡脱离直径越大。气泡脱离直径从 20 µm 腔体直径的 0.45 mm 增加到 70 µm 腔体直径的 0.61 mm。此外,更高的饱和压力将产生具有较小脱离直径的气泡:它们从 0.75 bar 的 0.62 mm 减小到 1.75 bar 的 0.47 mm。在腔体直径和饱和压力相似的情况下,气泡脱离直径不会因过热度的不同而发生显著变化。气泡脱离频率随过热度的增加而线性增加。虽然压力对气泡脱离频率有限制作用,但另一方面,较大的腔体直径会导致较低的气泡脱离频率。