在脊椎动物中,甲状腺纤维蛋白是一种高度保守的糖蛋白激素,除了甲状腺刺激激素(TSH)外,它是TSH受体的有效配体。甲状腺激素被认为是其亚基GPA2和GPB5的最祖先糖蛋白激素和直系同源物,在脊椎动物和无脊椎动物中广泛保守。与TSH不同,甲状腺纤维蛋白神经内分泌系统的功能在很大程度上尚未探索。在这里,我们在秀丽隐杆线虫中确定了功能性甲状腺抑制蛋白样信号传导系统。我们表明,GPA2和GPB5的直系同源物以及甲状腺激素释放激素(TRH)相关的神经肽构成了促进秀丽隐杆线虫生长的神经内分泌途径。GPA2/GPB5信号是正常体型所必需的,并通过激活糖蛋白激素受体直立型FSHR-1来起作用。秀丽隐杆线虫GPA2和GPB5在体外增加了FSHR-1的cAMP信号传导。两个亚基均在肠神经元中表达,并通过向其神经胶质细胞和肠受体发出信号来促进生长。受损的GPA2/GPB5信号传导导致肠腔腹胀。此外,缺乏甲基抑制蛋白的信号传导的突变体显示出增加的排便周期。我们的研究表明,甲状腺激素GPA2/GPB5途径是一种古老的肠神经内分泌系统,可调节Ecdysozoans的肠道功能,并且可能在祖先中参与了对生物生长的控制。
乌克兰人法案根据《乌克兰人法》第104(a)条的经济繁荣和机会,P.L。118-50,F部(“乌克兰人法案”或“法案”),所有俄罗斯主权资产所在的金融机构所在的所有金融机构,并且需要知道或应该知道此类资产,必须在2024年8月2日,在2024年8月2日或在10天之内或在此类评估的10天内向外国资产控制办公室(OFAC)提供此类资产的通知。 代表外国金融机构维护通讯员或应付账户账户的金融机构应行使合理的尽职调查,以报告此类帐户中持有的任何俄罗斯主权资产。 金融机构可以依靠有关根据行政命令(E.O.)申请4号指令4的俄罗斯主权资产的报告 14024或根据31 C.F.R.提起的财产的报告 §501.603(b)根据该法案第104(a)条就这些资产履行其义务,并且不应根据本指示重新报告OFAC的任何此类资产。 根据本指令提供的报告应确定根据E.O.指令4的指令4的未经其他报告的俄罗斯主权资产。 14024或根据31 C.F.R.提起的财产的报告 §501.603(b)。118-50,F部(“乌克兰人法案”或“法案”),所有俄罗斯主权资产所在的金融机构所在的所有金融机构,并且需要知道或应该知道此类资产,必须在2024年8月2日,在2024年8月2日或在10天之内或在此类评估的10天内向外国资产控制办公室(OFAC)提供此类资产的通知。代表外国金融机构维护通讯员或应付账户账户的金融机构应行使合理的尽职调查,以报告此类帐户中持有的任何俄罗斯主权资产。金融机构可以依靠有关根据行政命令(E.O.)申请4号指令4的俄罗斯主权资产的报告14024或根据31 C.F.R.提起的财产的报告§501.603(b)根据该法案第104(a)条就这些资产履行其义务,并且不应根据本指示重新报告OFAC的任何此类资产。根据本指令提供的报告应确定根据E.O.指令4的指令4的未经其他报告的俄罗斯主权资产。14024或根据31 C.F.R.提起的财产的报告§501.603(b)。
巴基斯坦的马铃薯 ( Solanum tuberosum L.) 种植面临挑战,其中由立枯丝核菌 (Rhizoctonia solani Kühn) 引起的黑痂病是一个严重问题。化学杀菌剂等传统方法可以部分控制该病,但缺乏有效的解决方案。本研究探讨了生物肥料和菊科杂草生物质土壤改良剂在控制该病害方面的潜力。选择了两个马铃薯品种 Karoda 和 Sante,并单独或与苍耳生物质一起测试了两种生物肥料 Fertibio 和 Feng Shou。阳性对照中的病害压力最高,化学杀菌剂可显著降低病害压力。苍耳生物质也显著降低了病害发生率。Fertibio 的效果优于 Feng Shou。施用生物肥料和生物质可以改善植物的生理生化特性。块茎重量、光合色素、总蛋白质含量和抗氧化酶(CAT、POX 和 PPO)呈正相关。Fertibio 和 S. marianum 生物质的联合应用可有效控制黑斑病。这些环保替代品可以增强疾病管理和产量。未来的研究应探索它们的成本效益、商业化和安全性。
1. 增强而非替代 人工智能应被用作增强人类创造力和生产力的工具,而不是替代我们创意团队的艺术视野或工艺。我们相信人类思想和智慧的力量,人工智能应该增强而不是削弱这种力量。 2. 透明度和道德使用 在生产过程中使用人工智能的任何行为都必须透明,特别是当它有可能影响最终产品的真实性或原创性时。当在创作过程中使用人工智能工具时,我们会坦诚地告知客户和合作者。 3. 保护知识产权和创作完整性 使用人工智能时应尊重知识产权的所有权,包括我们自己的和第三方的知识产权。人工智能生成的内容不得侵犯受版权保护的材料,并且必须严格遵守许可法和协议。
抽象的超分辨率(SR)是一个不当的反问题,其中具有给定低分辨率图像的可行解决方案集的大小非常大。已经提出了许多算法,以在可行的解决方案中找到一种“好”解决方案,这些解决方案在忠诚度和感知质量之间取得了平衡。不幸的是,所有已知方法都会生成伪影和幻觉,同时试图重建高频(HF)图像细节。一个有趣的问题是:模型可以学会将真实图像细节与文物区分开吗?尽管有些重点侧重于细节和影响的分化,但这是一个非常具有挑战性的问题,并且尚待找到满意的解决方案。本文表明,与RGB域或傅立叶空间损耗相比,使用小波域损失功能训练基于GAN的SR模型可以更好地学习真正的HF细节与伪像的表征。尽管以前在文献中已经使用了小波域损失,但在SR任务的背景下没有使用它们。更具体地说,我们仅在HF小波子带上而不是在RGB图像上训练鉴别器,并且发电机受到小波子带的忠诚度损失的训练,以使其对结构的规模和方向敏感。广泛的实验结果表明,我们的模型根据多种措施和视觉评估实现了更好的感知延续权权衡。
煤炭处理厂中的抑制系统。seil确保了控制逃亡煤炭的有效机制。- SEIL提供了在煤炭破碎机和煤层堆场运行的粉尘抑制系统,即兴干燥的雾气抑制系统(DFDS)也安装在传输点,以最大程度地减少逃亡灰尘,沿着院子的两侧提供了沿着任何逃亡者的供应。
1 “Enrico Piaggio”研究中心和 Dipartimento di Ingegneria dell'Informazione,比萨拉戈大学 Lucio Lazzarino 1, 56122 比萨,意大利; 2 用于人类合作与康复的软机器人,Fondazione Istituto Italiano di Tecnologia,Via Morego 30, 16163 Genova,意大利; 3 RSI - 慕尼黑工业大学 (TUM) 慕尼黑机器人与机器智能学院机器人与系统智能主席,Heßstr。 134, 80797 慕尼黑, 德国; 4 MoMiLab 研究中心,IMT 卢卡高级研究学院,Piazza S. Francesco 19, 55100 Lucca, Italy; 5 苏黎世大学神经病学系血管神经病学和神经康复科,Frauenklinikstrasse 26, 8006 苏黎世,瑞士;6 汉诺威医学院矫形外科系生物力学和生物材料实验室 (LBB),L384, 30625 汉诺威,德国;7 苏黎世健康科学与技术系机器人与智能系统研究所康复工程实验室,CLA H 1.1 Tannenstrasse 3, 8092 苏黎世,瑞士
惯性质量,J 101 537 . 5 kg m 2 阻尼,B 100 N ms / rad 极对数,p 2 变速箱速比,N 24 . 12 叶片长度 + 轮毂,R m 13 . 5 m 转子电阻,R r 0 . 007 645 44 Ω 转子电感,L r 0 . 007 067 33 H 定子电阻,R s 0 . 009 585 76 Ω 定子电感,L s 0 . 000 252 35 H 定子电流。 d 轴,isdisd ≥ 0 A 定子频率,ω s ω s ≥ 0 rad / s 初始转子频率,ω r 0 2 rad / s 转子频率,ω r ω r ∈ [ 0 , 9 . 208 ] rad / s 直流母线电压,vv ∈ [ 437 , 483 ] V (460 V ± 5%) 直流母线电阻,R 1000 Ω 直流母线电容,C 0 . 1 F 连接电感,L 0 . 001 H 连接电阻,R 0 . 05 Ω 时间窗口 600 s 直流母线电压,vv ′′ ∈ [ − 20 , 20 ] V / s 2
1 名古屋大学材料与系统研究所,日本名古屋 2 名古屋大学电气工程系,日本名古屋 电子邮件:{imanaka; s.sugimoto; tkato}@imass.nagoya-u.ac.jp;t.bigssk@gmail.com 摘要 — 可再生能源对于向孤岛电力系统供电具有吸引力。当光伏系统 (PV) 的渗透率变大时,电力需求无法消耗所有的 PV 输出,但需要减少 PV 输出。热泵热水器和电池储能系统的需求响应 (DR) 可以减少弃电。自来水系统也适合 DR 资源,因为许多自来水系统都有大型水箱或水坝作为蓄水池。为了充分利用自来水系统的巨大灵活性,需要对 DR 资源进行多日协调控制。本文首先建立了包含多个需求响应资源的孤立电力系统优化模型,作为制定协调控制方法的第一步。对比了2周优化和1天优化下需求响应资源的运行情况,分析了5种光伏容量设置下长期规划的效果。仿真结果表明,需求响应协调控制的适用规则随季节和光伏安装容量的不同而不同。
英国官方承认不列颠战役于 7 月 10 日爆发 [见本期刊其他部分转载的道丁电报 - 第 11-13 段],当时英吉利海峡上空爆发了大规模空战。德国人将第一阶段确定为一场单独的战役,他们称之为 Kanalkampf,即海峡战役,该战役在接下来的一个月内展开,德国空军对沿海护航队和港口发动了袭击。德国人认为,他们只是在 8 月中旬对机场和雷达站发动了攻击,才开始了他们的主要进攻,即不列颠战役本身,进攻始于泰晤士河口的一些初步交锋和对机场和雷达的一些小规模攻击,最终形成了代号为 Adler Tag [鹰日] 的全面进攻,原定于 8 月 13 日发动。那天早上的阿德勒行动被证明是一场惨败,德国 C2 系统在早期就失去了对行动的控制,并在其内部造成了混乱和混乱。最后,一些已经升空的部队试图以天气原因取消行动,结果许多部队(尤其是战斗机护航部队)中止了行动,而其他部队(主要是轰炸机编队)则没有中止行动。因此,早上的行动半途而废。下午,在一次协调更好的行动中,大型编队袭击了机场和港口。尽管处理得不太好,但最初的阿德勒行动 [鹰击] 标志着一段激烈战斗的开始,在此期间,德国空军猛烈轰炸了英国皇家空军的机场和雷达,战斗机司令部也同样凶猛地进行了防御。