摘要:在本文中,提出了带有快速安全充电的锂离子电池充电器接口(BCI)电路。在充电期间,由于异步控制信号引起的电流尖峰和温度是极大地影响电池性能和寿命的因素。该电路具有以下特征:防止电流尖峰,还包含了永久的电池温度监测块。BCI使用双电流源,并在1.5 a的大电流模式下生成常数电流,进一步减少了充电时间。使用TSMC 180 nm技术在Cadence Virtuoso中设计和模拟了所提出的BCI。控制信号的仿真结果表明,所提出的体系结构能够消除当前的漂移并将电池温度保持在正常工作范围内。关键字:锂离子电池充电器接口,快速和安全的充电,双电流源,trick流,电流模式,大电流模式,恒定电压模式。
然而,与此同时,大规模的可配置性在功耗,电气和光学包装,驱动器电子和控制算法方面面临一些巨大的挑战。毕竟,具有重新配置功能的电路总是更大,更复杂的,而专门为单个目的而设计的电路。这将导致更长的光路和需要更多的电气控制信号,这反过来又需要在操作过程中更高的功耗。,我们将在不同的欧洲合作背景下在我们建立通用可编程光子芯片的道路上讨论我们在这些领域的最新进展。使用高效率的电磁调谐器,高密度包装解决方案以及电子和软件层扩展硅光子学,以控制这些光子电路的行为,可用于光子和微波模拟信号处理。,我们研究了新技术(例如MEMS)的引入,或新材料(例如用于硅上的高密度电磁相移位器)的新材料,取代了通常用于此目的的渴望强力的微型造影剂。我们还讨论放大器的引入如何显着增强可编程光子学的功能。
摘要:脑机接口(BCI)利用神经活动作为控制信号,实现人脑与外部设备之间的直接通信,通过脑电图(EEG)捕捉大脑产生的电信号,将其转化为反映用户行为的神经意图,正确解码神经意图才能实现对外部设备的控制。基于强化学习的BCI增强解码器仅基于环境的反馈信号(奖励)完成任务,构建了从神经意图到适应变化环境的动作的动态映射通用框架。但使用传统的强化学习方法存在维数灾难、泛化能力差等挑战。因此,本文利用深度强化学习构建解码器以正确解码EEG信号,通过实验证明其可行性,并在具有高动态特性的运动成像(MI)EEG数据信号上展示其更强的泛化能力。
产品描述SQ9910是PWM高效LED驱动器控制IC。它允许从85V AC到265V AC的电压来源的高亮度(HB)LED有效运行。SQ9910以高达300kHz的固定开关频率控制外部MOSFET。可以使用单个电阻对频率进行编程。LED字符串以恒定电流而不是恒定电压驱动,从而提供恒定的光输出和增强的可靠性。输出电流可以在几毫安之间进行编程,最高超过1.0a。SQ9910使用坚固的高压连接隔离过程,该过程可以承受最高500V的输入电压振荡。可以通过在SQ9910的线性调光控制输入下应用外部控制电压来编程到LED字符串到零和最大值之间的任何值。SQ9910提供了低频PWM DIMMing输入,该输入可以接受占空比为0-100%的外部控制信号,频率高达几千期应用程序电路
在许多应用中,包括 RF 设计的 VGA/PGA,具有 dB 线性(dB 尺度上的线性关系)增益特性的放大器是首选,因为它在 AGC 环路中使用时可以实现恒定的稳定时间 [13–15]。这种关系在 BJT 技术中很容易实现,其中增益与控制信号呈指数关系 [16–18]。对于 MOS 器件,尽管指数关系存在于亚阈值区域并可提供较宽的增益控制范围 [19],但饱和区有利于降低噪声并增加带宽 [20],并且由于后者的平方关系,需要指数 VI 转换电路来实现指数增益控制关系 [21]。实现指数转换器的一些方法采用 BiCMOS 技术[22–24]、寄生双极晶体管[20]或使用提供伪指数函数近似的 CMOS 电路[25,26]。
组件。[1]它们由一个有机半导体薄膜组成,该薄膜在两个电极之间具有图案,即源和排水管。半导体薄膜与浸入栅极电极的电解质接触。通过应用栅极电压(V g),来自元素的离子进入半导体,改变其掺杂状态和电导率,进而改变了在源和排水量和排水管之间流动的电流(排水电流,I D)。[2]这种体积掺杂机制高度有效,导致i d发生巨大变化,以减少v g的小变化。结果,OECTS显示出非常高的转频(G M =∂Id /∂vG),这是控制信号弹药的参数。[3]但是,对于OECT的响应时间通常非常慢,因为离子必须穿透整个膜。[4]这种特征的组合使OECT适用于生物推导和大区域电子的某些领域,最著名的是可打印的电子产品。[1,5,6]
摘要。局部场电位 (LFP) 源自数千个神经元。因此,它们可以为脑机接口 (BMI) 提供持久而稳定的控制信号。在这里,我们评估了在使用基于 LFP 的 BMI 进行 2-D 光标控制期间 2 只猴子初级运动皮层中 LFP 的稳定性。使用无需再训练或适应的仿生 BMI 解码器,猴子表现出高性能,并且保持稳定超过 11 个月。离线时,我们通过从每个会话中的各个特征计算大脑控制的光标速度的解码器并在最后一个会话中使用它们解码速度来检查 LFP 特征的稳定性。许多 LFP 特征与光标速度显示出高度相关性,并且光标速度在 11 个月内变得越来越稳定。这表明猴子学会了运动皮层场电位和输出之间的稳定映射,并且 LFP 将为 BMI 提供高度稳定的信号源。
集成 12 位 DAC 和 ADC 的 RF 2 × 2 收发器 TX 频段:47 MHz 至 6.0 GHz RX 频段:70 MHz 至 6.0 GHz 支持 TDD 和 FDD 操作 可调通道带宽:<200 kHz 至 56 MHz 双接收器:6 个差分输入或 12 个单端输入 出色的接收器灵敏度,800 MHz 时噪声系数为 2 dB LO RX 增益控制 用于手动增益的实时监视器和控制信号 独立的自动增益控制 双发射器:4 个差分输出 高线性宽带发射器 TX EVM:≤−40 dB TX 噪声:≤−157 dBm/Hz 本底噪声 TX 监视器:≥66 dB 动态范围,精度为 1 dB 集成小数 N 分频合成器 2.4 Hz 最大本振 (LO) 步长 多芯片同步 CMOS/LVDS 数字接口 应用 点对点通信系统 毫微微蜂窝/微微小区/微小区基站 通用无线电系統
摘要 — 直流 (DC) 电机是控制工程应用中最常用的电机,因为它们结构简单、易于控制且性能优异。这些电机应得到很好的控制以执行所需的任务。本研究使用 LabVIEW 进行位置控制系统,重点研究直流电机的功能应用。该控制系统使用一个闭环实时控制系统,该系统在电机轴上附加了一个 298 编码器,为比例积分微分 (PID) 控制器提供反馈位置信号。PID 以最小的误差将直流电机的位置控制在所需位置。PID 控制器在 LabVIEW 软件中实现,该软件通过 Arduino 板将控制信号发送到实时直流电机。此外,还开发了 LabVIEW 软件来显示电机位置随时间的输出响应,以便于观察系统的性能。PID 控制器增益是基于试错法获得的。在这些控制器参数下,系统已在跟踪信号的不同位置和干扰抑制下进行了测试。最后,结果表明,设计的控制器具有良好的性能特性,可保持电机的所需位置。
摘要:用于集成光子和自由空间平台的下一代光相变为变化技术的开发取决于可以在大量大量且光学损失低的情况下反复切换的材料的可用性。近年来,由于在光谱的近红外透明度和接近硅接近的高折射指数中,由于良好的光学透明度,基于基于锑的硫化硫化硫化材料SB 2 SE 3 SE 3 SE 3被确定为许多应用。SB 2 SE 3的结晶温度左右允许使用光学或电气控制信号在中等能量下实现切换,同时为非挥发性存储提供足够的数据保留时间。在这里,我们研究了与光学应用相关的一系列膜厚度的SB 2 SE 3膜光学切换的参数空间。通过识别最佳的切换条件,我们证明了在20 kHz的可逆切换速率下最多可忍受10个循环。我们的工作表明,固有膜参数与泵送条件的组合对于在光相变化应用中实现高耐力尤为重要。