对话助手在普通人群中无处不在,然而这些系统对残疾人或言语和语言障碍人士却没有产生影响,对于他们来说,基本的日常交流和社交互动都是一项艰巨的任务。语言模型技术可以在赋予这些用户权力方面发挥巨大作用,并通过交互支持帮助他们以更少的努力与他人互动。为了使这一群体能够发挥作用,我们构建了一个系统,它可以在社交对话中代表他们,并生成可由用户使用提示 / 关键词控制的响应。对于正在进行的对话,该系统可以建议用户可以选择的响应。我们还构建了可以通过在对话响应上下文中建议相关提示来加速这种通信的模型。我们引入了关键词丢失来在词汇上限制模型响应输出。我们展示了对提示/关键词预测器和可控对话系统的自动和人工评估,以表明我们的模型比没有控制的模型表现更好。我们的评估和用户研究表明,端到端响应生成模型上的关键词控制功能非常强大,可以帮助患有退行性疾病的用户进行日常交流。
引入快速频率响应改进 (FFRA) 项目是为了增强电网稳定性和弹性。FFRA 包括实施一次频率响应、快速频率调节服务和快速频率响应市场。这些市场需要快速响应的能源资源,因此具有先进操作系统和数字控制的储能系统对于参与至关重要。德克萨斯州的一位客户要求 FlexGen 更新其现有的 HybridOS 能源管理系统,以满足最新的 FFR 软件和控制响应标准。
人类操作员是稳定、安全的电力系统不可或缺的一部分。虽然人们越来越关注自动化改进,但理解和培训人类操作员的重要性可能被低估了。本文讨论了一个通过评估人类相对于使用最优控制理论确定的参考操作员模型的表现来增强操作员培训计划的项目。除了建立一个简单的基于计算机的操作员工作站以供将来培训之外,本文还介绍了人在环电力系统实验的最优控制响应设计方法。介绍了整个系统模型。将最优控制器综合方法应用于模型系统并设计最优控制器。然后将最优控制器的性能与人类受试者的性能进行比较。
人类操作员是稳定、安全的电力系统不可或缺的一部分。尽管人们越来越关注自动化改进,但理解和培训人类操作员的重要性可能被低估了。本文讨论了一个通过评估人类相对于使用最优控制理论确定的参考操作员模型的表现来增强操作员培训计划的项目。除了建立一个简单的基于计算机的操作员工作站以供将来培训之外,本文还介绍了人机回路电力系统实验的最优控制响应设计方法。介绍了整个系统模型。将最优控制器综合方法应用于模型系统并设计了最优控制器。然后将最优控制器的性能与人类受试者的性能进行比较。
摘要:这项研究使用与自适应lookahead机制集成的基于衣服的方法为自动驾驶汽车引入了先进的横向控制策略。主要的重点是通过应用Euler螺旋在平稳的曲率过渡中提高侧向稳定性和路径跟踪准确性,从而减少了乘客不适和车辆滚动风险。我们工作的创新方面是基于实时车辆动力学和道路几何形状的LookAhead距离的自适应调整,该距离可确保在不同条件下的最佳路径。准反馈控制算法在每个时间步骤构造了最佳的衣服,从而生成适当的转向输入。铅过滤器补偿了车辆的横向动力学滞后,从而提高了控制响应能力和稳定性。通过使用Trucksim®和Simulink®的全面共同模拟,拟议控制器的效果得到了验证,这表明了各种驾驶场景中横向控制性能的显着改善。未来的方向包括扩展控制器的高速应用程序,并进一步优化以最大程度地减少轨道错误,尤其是对于清晰的车辆。
KFC 400 飞行控制系统在一台计算机中整合了完整的自动驾驶仪和飞行指引仪计算功能。其数字飞行计算机和集成架构使 KFC 400 能够更快地确定飞机控制要求,并且比以前的自动驾驶仪系统更平稳、更准确地执行这些要求。主要由于其双通道飞行计算机设计,KFC 400 可以更积极地控制飞机,同时提供单通道系统无法提供的安全监控级别。整个飞行控制系统采用数字化、固态设计,在节省系统重量和所需安装空间的同时,提供最大的可靠性。KFC 400 旨在优化乘客和机组人员的舒适度,同时在任何飞行情况下仍提供准确的控制响应。只要有可能,自动驾驶仪引起的飞机运动就会接近人类可感知的下限,从而确保飞行异常平稳。但是,飞行控制系统的许多最大可控值是在飞行控制系统认证过程中为每架飞机确定的。有关特定值,请参阅您的飞机的 KFC 400 飞行手册补充。
KFC 500 自动飞行控制系统在一台计算机中整合了完整的自动驾驶仪和飞行指引仪计算功能。其数字飞行计算机和集成架构使 KFC 500 能够更快地确定直升机的控制要求,并且比以前的自动驾驶仪系统更平稳、更准确地执行控制要求。主要由于其双通道飞行计算机设计,KFC 500 可以更积极地控制飞机,同时提供单通道系统无法提供的安全监控水平。整个飞行控制系统采用数字化固态设计,在节省系统重量和所需安装空间的同时,提供了最大的可靠性。KFC 500 旨在优化乘客和机组人员的舒适度,同时在任何飞行情况下仍能提供准确的控制响应。只要可能,自动驾驶仪引起的飞机运动就会接近人类可感知的下限,从而确保异常平稳的飞行。在飞机认证过程中,贝尔 230 型飞行控制系统的许多最大可控值均已确定。KFC 500 与 KAD 480 中央空中数据系统和 EFS 40/50 电子飞行仪表系统集成,以提高用户友好性和系统通告能力。
在最近引入 CRISPR/Cas9 技术进行基因敲除、基因敲入、基因补充和内源基因标记之前,很少有基因工具可用于研究克氏锥虫。核糖开关是天然存在的自裂解 RNA(核酶),可被配体激活。我们实验室最近的研究结果证明了枯草芽孢杆菌中的 glmS 核酶可用于布氏锥虫的基因沉默,该核酶已被证明可控制响应外源葡萄糖胺的报告基因表达。在这项工作中,我们使用 CRISPR/Cas9 系统用活性(glmS)或非活性(M9)核酶对克氏锥虫糖蛋白 72(TcGP72)和液泡质子焦磷酸酶(TcVP1)进行内源性标记。通过 PCR 确认基因标记,并通过蛋白质印迹分析验证蛋白质下调。通过免疫荧光分析和体外生长定量进行进一步的表型表征。我们的结果表明,该方法成功地抑制了两种基因的表达,而无需培养基中的葡萄糖胺,这表明克氏锥虫在正常生长条件下产生足够水平的内源性葡萄糖胺 6-磷酸来刺激 glmS 核酶活性。该方法可用于敲除克氏锥虫中的必需基因并验证这种寄生虫中的潜在药物靶点。
研究机会:船上应急响应 I. 简介 本公告描述了海军和海军陆战队科学技术长期广泛机构公告 N00014-23-S-C004 下的“压力响应”和“基础生理科学”技术领域,可在 https://www.nre.navy.mil/work-with-us/funding-opportunities/announcements 找到。提案的提交、评估以及研究补助金和合同的发放将按照上述长期广泛机构公告中所述进行。本公告旨在引起科学界的关注:(1) 感兴趣的领域,包括船上损害控制和海上大规模伤亡生存力和救援方面的进展;(2) 鼓励对这个领域感兴趣的人进行对话,以及 (3) 提交白皮书和完整提案的计划时间表。II.主题描述 拟议的主题将探索和利用与当代和预测的美国海军和美国海军陆战队作战能力差距相关的基础和应用人体生理学和人为因素重点研究工作。因此,项目将由预算活动 1 和 2 资助(定义见国防部财务管理条例第 2B 卷第 5 章)。此外,整体科技工作将在技术就绪水平 (TRL) 1-5 阶段进行。 主题 1.增强舰载损害控制能力 背景:由于在海上与势均力敌的对手交战的风险增加,舰载战斗相关的紧急情况和随后的损害控制响应可能是未来美国海军行动的一个决定性特征。这一重点领域的目标是了解和减轻损害控制活动对水手的负面生理影响。损害控制活动包括舰载损坏;管理后果;恢复能力;维持舰船的战斗力。损害控制活动通常包括灭火;防洪;结构支撑/修理;作战系统修理;军械清除;和伤亡护理。这些活动主要由接受过各种损害控制功能训练的水手执行,并在受损船上空间的极其危险的条件下进行。危险可能包括极热、火灾、烟雾、有毒化合物、化学/生物制剂或辐射。目前缺乏针对这一问题领域的创新现代化解决方案,包括对船员经历的独特生理/认知压力源的理解有限
(如果更改),2025年3月18日,星期二上午7:00注册开始于上午7:30至下午5:30展览馆上午8:30上午至上午30点开放全体会议:定义威胁景观和行政优先事项上午11:00至下午5:30分组会议,2025年3月19日,星期三,上午7:00注册开始于上午7:30-下午7:30展览厅上午8:30至上午10:30全体会议:通过多边控制响应全球威胁,上午11:00至下午3:00分组会议下午3:30至下午5:00小组:出口执法下午5:30至下午7:30参展商网络招待会2025年3月20日,星期四上午7:00注册开始于上午7:30 - 下午30点展览厅上午8:30:00圆桌会议突破性会议主题:半导体控制,新兴技术和外国技术分析,最终使用/最终用户控制,aukus,Aukus,出口执法最佳实践,信息和通信技术和服务(ICT),监管技术和服务(法规审查),空间控制,空间控制,国防生产行为包括:kervin Kurland,kurland for non-exties for non-exies for non-ex contive for non-ex corties for non-ex contive non-ex cortions for non-ex cortions for non-ex,桑德曼(Sonderman),执行出口执法助理秘书的非排他性职能和职责,比斯·朱莉娅·霍森斯基(BIS Julia Khersonsky),战略贸易副助理秘书,比斯·埃里克·朗内克(BIS Eric Longnecker),国际秘书部门国际安全部门,国际保障局局长,国际保健部门,国际局局长,国际保障局,国防部,国际秘书局,国际秘书局,国际秘书部门,国际秘书局,国际保障局,国际保障局局长日本经济,贸易与工业部总干事Katsuro Igari,日本Sungyeol Kim,贸易,工业和能源部总干事,大韩民国丹尼斯·雷迪尼特(Denis Redonnet)