摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监控和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室部分向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制的研究挑战。第三,我们提出了未来几年将在实验室中探索的一些研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
摘要。随着高度自动化的船舶无人驾驶,其操作员将进入岸基控制中心。近年来,挪威科技大学建立了先进而灵活的研究基础设施,用于对自主船舶进行研究以及对这些船舶的监控和控制。基础设施包括 (1) milliAmpere1 和 milliAmpere2,这是两艘全电动自主城市客运渡轮,配备了先进的传感器和自主导航设备;(2) 岸上控制实验室,一个灵活的岸上控制中心,操作员可以在这里监视和控制一支自主船队;(3) 一个实验室部分,研究人员可以在这个实验室向控制中心的操作员发出指令,并记录、观察和分析他们的行为;(4) 一个毗邻控制室的观察室,利益相关者可以观察控制室正在进行的实验;(5) 渡轮模拟器 Autoferry Gemini,允许研究人员创建具有挑战性或高风险的场景,在这些场景中,操作员可以接受压力测试,而不会对船舶、船员和乘客造成危险;(6) 混合现实实验室 MRLAB,我们可以在虚拟环境中测试城市自主客运渡轮的物理设计;(7) 一个用于处理乘客并具有感应充电功能的码头。在本文中,我们首先描述了研究基础设施的目的和运行范围,以及技术设计、物理设置和设备。其次,我们提出了研究基础设施发展的路线图,以应对未来自主船舶及其监督和控制方面的研究挑战。第三,我们提出了未来几年将在实验室中探索的一系列研究问题。
EPR 提供特别有效的物理保护,防止极端外部危害。反应堆厂房 (1)、乏燃料厂房 (2) 和四座安全厂房 (3) 中的两座以及控制室 (4) 均受到钢筋混凝土外壳 (5) 的保护,其厚度足以承受军用或商用飞机的高速撞击。另外两座安全厂房位于反应堆厂房的相对两侧,因此只有其中一座因飞机坠毁而受损,不会造成任何安全后果。同样,用于应急电力供应的柴油发电机位于两座不同的厂房 (6) 中,也受到地理隔离的保护。
目前,运营安全关键服务的客户面临的最大挑战是成本压力上升和运营环境的持续变化,最近部分原因是疫情的影响。用户需要更灵活的系统和软件解决方案,以确保他们继续满足苛刻的安全要求,并可以轻松调整运营资源和运营地点以满足当前需求。因此,需要灵活的通信方式和集成控制室解决方案。将数据和语音通信迁移到联合 IP 网络为更大的灵活性创造了技术前提条件,例如,远程任务需要这种灵活性。与此同时,随着网络的增加,网络安全变得越来越重要。
其风险敏感性以及由超过正常压力造成的损害程度。尽管每个工厂都有各自的问题,但似乎有些问题在不同程度上是共同的。现代炼油厂中最薄弱和最易受攻击的区域或部分是单元控制室、开关室、主变电站、发电厂、将大型炼油设备的结构框架固定到地基的螺栓、液压和控制管线、固定管道和电线的支撑框架以及水冷设备的结构类型。原料和产品储存的类型和位置也是问题。许多事故与终端区域有关。
前补声 2x Meyer PSM-2 620 瓦 (DSL& DSR) 歌舞表演/舞台扬声器 2x Meyer UPQ-1P (吊挂在舞台后部) 2x Meyer 650-P 自供电超低音 2/18” (可选) 2X EV SX80 (吊挂在舞台前部) 地板监听音箱 8x Outline iSM 112 2x Meyer MJF 210 6x Meyer UM-1P 350 瓦 (舞台) 2x Meyer UM-100P 350 瓦 (舞台) 主 FOH 控制台:位于房间后方中央的 72” x 64” 座舱内 Digico SD8, 120 个 M/S 通道, 48 个 M/S 总线 展台控制台:位于房间后方右侧的控制室,打开窗户 Digico S21, 40 个 M/S 通道, 10 个 VCA, 16 个 M/S总线、10X8 矩阵、Reaper 录音就绪监视器控制台 SL 翼:Digico S21、40 通道 M/S 48 通道、Reaper 录音就绪选配:Midas X32,带 DL32 舞台箱、桌面推子或 iPad 控制数字蛇形输入 (DSL) 48 通道 Digico D2 机架,Madi 由所有 Digico 控制台控制。控制室中的第二个 D2。总共 96 个输入,32 个输出。1X Digico 48X8 Madi-Rack(仅限 SD8)舞台 XLR 接线板 12 通道 DSR 到 DSL 蛇形头 12 通道返回蛇形头 DSL 到 DSR 16 通道排练室到 DSL 蛇形头