● 对于没有地面空间安装标准室外冷凝器的住宅,这可能是一个解决方案。● 与传统的带逆循环的窗式空调机组相比,这种空调机组更安静,操作范围更大,控制性能更好。● 容量可与小型无管道迷你分体式空调相媲美,但成本更低。● 对于只有 120V 电源的住宅/公寓,这些空调机组可带来热泵效益,而无需进行可能昂贵的面板升级或铺设新的 240V 线路。● 可由业主/租户/DIY 安装,设置工作量极少。● 预充式密闭系统可降低泄漏风险。● 有可能满足大部分或全部多户住宅的供暖/制冷需求。● 租户搬家时可以购买并带走这些空调机组。● 对于窗式空调机组,与其他设计相比,马鞍形设计可以提供更多的原始窗景。● 对于穿墙式空调机组,可能只需要排气/进气口。● 它们可能有助于紧急制冷。
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和
摘要:本文介绍了一种控制策略,旨在有效地运营一个配备了电动机电动汽车快速充电,可再生能源和电力储能单元的服务区域的服务区域。此处考虑的控制要求符合服务区域运营商的角度,他们的目的是避免在与分配网格连接点上的功率流中的峰值,同时在最短时间提供充电服务。工作的关键方面包括对充电功率需求和发电的不确定性管理,成本功能的拥堵和国家依赖性权重的设计,以及在工厂的两种不同硬件配置中的控制性能的比较,不包括公共汽车和UPS连接方案。在不确定的干扰效果下分别影响公共汽车和UPS方案的不确定干扰的效果,旨在跟踪不确定的功率参考的随机模型预测控制器的设计。仿真结果表明,根据关注所选参考的跟踪,缓解拥塞的缓解,存储操作的稳定性以及缓解不确定性影响的增量验证计划的相关性。
• 节能的 TPI 控制性能 • 先进的自学习控制可适应环境并确保以最小的能耗实现严密的温度控制 • 纤薄的现代风格 • 简单的用户界面,具有大尺寸高对比度显示屏和易于阅读的字符 • 显示屏显示室温,可选择查询设定点 • 5°C 至 35°C 的设定点范围,以 0.5°C 为增量,使用 ▲ 和 ▼ 按钮 • 关闭/待机按钮,允许手动关闭,并激活防霜保护 • 可调节的关闭/待机设定点 5°C 至 16°C 或 DT92 可完全关闭 • 室内温控器由 2 节 AA (LR6) 碱性电池供电,电池寿命长达 4 年(至少 2 年),具有电池电量不足警告 • 通过解开前盖即可轻松更换电池 • 继电器开关盒由 230Vac 主电源供电,带有 24...230Vac SPDT 无源触点 • 5 A 电阻,3 A 电感开关额定值
本课程论述了金属微观结构与性能之间的关系。课程包含 15 章。1 介绍性讲座。微观结构控制性能的方法。1 合金元素对钢结构和性能的影响。1 一般建筑用途的钢。合金化策略、强化机制、热处理、微观结构、性能。2 工具钢。合金化策略、强化机制、热处理、微观结构、性能、应用、缺陷。3 轴承钢、弹簧钢和钢丝。要求。合金化策略、强化机制、热处理、微观结构、性能、应用、缺陷。4 马氏体时效钢。合金化策略、强化机制、热处理、微观结构、性能、应用、缺陷。5 成形性优良的钢。深冲质量和 (DDQ) 钢和 1 EDDQ 钢,ELC 和 IF 路线之间的加工差异,纹理和 1 沉淀控制,使用性能。6 轨道钢 – 要求。合金化策略、强化机制、热处理、微观结构、性能、应用、缺陷。案例研究-
摘要:导航水下环境提出了控制和本地化技术的严重挑战。未知领土的成功导航需要实现目标的自动操作,同时避免遇到障碍,并提出一个重大问题。使用传感器数据和避免障碍技术的基于检测的控制对于自主水下车辆(AUV)的自主权至关重要。本研究的重点是开发基于滑动模式控制(SMC)的控制方法,并利用成像声纳传感器进行避免障碍物。提出的方法包括用于俯仰和深度控制的控制器,以避免固定物体。采用高斯电位功能来指导AUV的助手并避免障碍物。许多模拟结果评估了AUV在现实模拟条件下的控制性能,从而评估了准确性和稳定性。模拟结果的实验表明,使用海底环境模拟模型,我们在导航各种障碍(例如柔和的上升,陡峭下降和水下壁)方面的表现出色。
在基于现代模型的控制框架中,例如模型预测控制或基于模型的信息学习学习,机器学习已成为一种无处不在的技术类别,以提高动态模型的准确性。通过利用诸如神经网络之类的表现力体系结构,这些框架旨在通过构建系统动力学的准确数据驱动表示,旨在提高系统的模型精度和控制性能。尽管对其非学习顾问进行了显着的绩效提高,但对于这些基于模型的模型的基于模型的控制器在不确定性的存在下,这些模型的控制器通常几乎没有保证。尤其是在模拟误差,噪声和外源性干扰的影响下,确定这些学习模型的准确性是一项挑战。在某些情况下,甚至可能违反约束,使控制器不安全。在这项工作中,我们提出了一个新颖的框架,该框架可以应用于大量的基于模型的控制器,并通过以在线和模块化方式鲁棒化基于模型的控制器,从而减轻上述问题,并在模型的准确性和约束满意度上提供可证明的保证。该框架首先部署保形预测,以生成有限的,可证明的有效的不确定性区域,以无分配方式为动态模型。通过动态约束程序,这些不确定性区域被纳入约束中。关键字:基于学习的控制,基于模型的控制,不确定性量化1。(2023a))。Jiahao等。Jiahao等。与预测参考生成器的配方一起,生成了一组可鲁棒的参考传播,并将其纳入基于模型的控制器中。使用两个实际的案例研究,我们证明我们提出的方法不仅产生了良好的不良区域,这些区域建立了模型的准确性,而且还使闭环系统以强大但不保守的方式满足约束。简介由于非线性优化框架的最新进展以及计算资源的可用性增加,在广泛的域上应用基于模型的控制器的应用趋势是趋势。,用于建筑物中的温度控制(Yao和Shekhar(2021)),用于自动驾驶汽车(Wu等人(2022))和四型控制(Chee等人机器学习方法的扩散同时导致了学习增强的,基于模型的控制框架的发展,这些框架利用学习工具通过改进动态模型来提高控制性能,例如(2023)。尽管这些发展激增,但这些基于学习的控制框架在不确定性存在下如何执行的问题仍然是一个积极的研究主题(Mesbah等人。(2022); Brunke等。(2022))。在这项工作中,我们通过提出一个新颖的框架来解决这个问题,该框架系统地允许基于模型的控制器在模型不匹配,噪声和外部干扰的集体影响下稳健地满足约束。
无人机具有提高操作灵活性和降低任务成本的良好能力,我们正在利用固定翼无人机实现的自动航母着陆性能改进。为了展示这种潜力,本文研究了两个关键指标,即基于 F/A-18 大攻角 (HARV) 模型的无人机飞行路径控制性能和降低进近速度。着陆控制架构由自动油门、稳定增强系统、下滑道和进近航迹控制器组成。使用蒙特卡洛模拟在一系列环境不确定性下测试控制模型的性能,包括由风切变、离散和连续阵风以及航母尾流组成的大气湍流。考虑了真实的甲板运动,其中使用了海军研究办公室 (ONR) 发布的海军环境系统表征 (SCONE) 计划下的标准甲板运动时间变化曲线。我们通过数字方式演示了允许成功着陆航母的限制进近条件以及影响其性能的因素。
摘要:面向太阳的姿态控制是大多数微纳卫星最重要的姿态控制方式之一,直接影响在轨能量获取,因此采用最简单的传感器和执行器以及最可靠的算法实现面向太阳的姿态控制具有重要意义。提出一种纯磁控制的面向太阳自旋稳定微纳卫星姿态控制方法,控制过程分为初始阻尼阶段、太阳对准阶段、自旋加速阶段和自旋稳定阶段4个阶段。所提方法考虑了轨道阴影区、太阳敏感器及太阳板偏置安装、太阳敏感器视场限制以及环境扰动力矩的影响。通过数值仿真评估了控制性能,仿真结果表明所提方法适用于搭载太阳敏感器和三轴磁力计作为姿态传感器、3个正交安装磁力矩器作为姿态执行器的卫星。所提出的方法适用于大多数地磁场能够提供足够姿态控制扭矩的地球轨道卫星。
电液控制系统的现代应用越来越依赖于系统组件之间的数字通信。向新的数字网络控制系统迈进需要所有组件与同一总线兼容。问题的关键在于数字伺服阀与通用数字网络的完全兼容性。这方面最高水平似乎是 EtherCAT 总线,2011 年用于测试新型飞机空客 350 的飞行控制系统 [1]。这一新概念提出的主要问题是电磁兼容性。这个问题可以借助光通信系统解决。其他问题包括:整个系统的时间响应、相位滞后和衰减。微控制器的扩展温度范围、振动不敏感性和 EMI 兼容性、方向流量控制阀的数字机载电子设备 (OBE) 可以安装在坚固的金属外壳中,并可以在恶劣环境中使用,安装在执行器本身上。这种布置改善了整个系统的响应时间和闭环控制性能。数字控制高响应阀最重要的方面是:灵活性、EMI 敏感性、分布式控制/现场总线集成和