埃克塞特大学和瓦格宁根大学的这项新研究研究了腺菌细菌如何影响蚊子幼虫的发展。结果表明,Asaia一天将开发时间加速了,这可能会促进需要生产数百万成人的质量养育方案。
供应链融资(SCF)为中小型企业(中小企业)提供信用,信用额度低和融资量表。由此产生的财务信贷数据和相关的业务交易数据是高度机密和私人的。但是,传统的SCF管理方案使用第三方平台和集中式设计,这些设计无法获得高度可靠的安全存储和细粒度的访问控制。为了满足这种需求,我们提出了Fabric-SCF,通过UTI-Lizing分布式共识来设计和实施基于区块链的安全存储系统,以实现数据安全性,可追溯性和不变性。基于属性的访问控制(ABAC)模型被部署用于访问控制,还利用智能合约来定义系统流程和访问策略,以确保系统的有效操作。为了验证织物-SCF的性能,设计了两组仿真实验的有效性。实验结果表明
区块链通常用于访问控制中,以提供安全的医疗数据交换,因为权力下放,无耐受性和可追溯性的特征。患者通过授予用户或医疗机构的访问权利来共享个人健康数据。现有访问控制技术的主要目的是确定允许访问医疗数据的用户。他们几乎从未认识到合法实体的内部攻击者。医疗数据将涉及授权组织中的多层访问。考虑权限管理的成本和内部恶意节点攻击的问题,用户希望在授权机构内实施授权约束。它可以防止他们的数据被不同授权医疗领域的最终用户披露。为了实现共享机构中医学数据的细粒度权限传播控制,本研究建议基于信任的授权访问控制机制。信任阈值根据其灵敏度分配给不同的特权,并用于生成零知识证明,以在区块链节点之间播放。此方法通过动态信任计算模型评估每个用户的信任。和同时,使用智能合约来验证用户的信任是否可以激活某些许可,并确保用户在授权验证过程中信任的隐私。此外,用户和机构之间的授权交易记录在区块链上,以实现患者的可追溯性和问责制。通过全面的比较和广泛的实验来证明该方案的可行性和有效性。
摘要:汽车供应链数据的可靠循环对于汽车制造商和相关企业至关重要,因为它可以促进有效的供应链运营并增强其竞争力和可持续性。但是,随着隐私保护和信息安全问题的越来越重要,传统数据共享解决方案不再能够满足高度可靠的安全存储和灵活访问控制的要求。响应这一需求,我们根据企业级区块链平台HyperLeDger Fabric提出了供应链生态系统的安全数据存储和访问控制方案。设计包含用于访问控制的基于双层属性的可调访问控制模型,其中四个智能合约旨在协调和实施访问策略。实验结果表明,在大规模数据和多属性条件下,提出的方法具有显着优势。它可以在密文下启用细粒度的动态访问控制,并在模拟现实世界的操作场景中保持高吞吐量和安全性。
丁型肝炎病毒 (HDV) 是一种小卫星病毒,是迄今为止在人类中发现的最小的病毒,可导致所有病毒性肝炎毒株中最具侵袭性的肝炎。HDV 的历史始于 1977 年,当时意大利都灵胃肠病学系的意大利胃肠病学家和病毒学家 Mario Rizzetto 报告说,他利用免疫荧光技术发现了一种名为 HBsAg 相关 delta 抗原的新抗原 [1]。该抗原是在已感染 HBV 并患有严重肝病的受试者体内发现的。丁型肝炎病毒的正式发现是在 1980 年,其命名法从希腊语改为拉丁语,delta 被 D 取代,例如 HDV [2]。尽管发病率和死亡率在发现 46 年后有所上升,但这种独特的病毒仍然是一个研究不足且被大大低估的谜 [3]。根据国际病毒分类委员会 (ICTV) 的规定,HDV 是 Deltavirus 属的唯一成员,属于 Delatviridae 科 [ 4 ]。最近,HDV 与其他 HDV 样病毒一起被重新归类为 Kolmioviridae,这是新领域 Ribozyviria 中唯一的科,其中 kolmio 在芬兰语中是“三角形”的意思,指的是希腊字母“ ∆ ”(delta)[ 5 , 6 ]。病毒基因组由一个环状单链负 (-) RNA 分子组成,该分子由 1668–1697 个核糖核苷酸组成(取决于基因型)[ 7 ]。HDV 使用 HBV 的 HBsAg 作为包膜,并使用相同的受体进入病毒 [ 8 ]。丁型肝炎病毒核衣壳含有两种 HDAg (δ 抗原颗粒 - HDAg) 亚型:大 (27 kD) 和小 (24 kD)。HDV 仅编码这两种蛋白质。这两种 HDAg 亚型的相对比例调节着复制和病毒组装之间的平衡 [9]。HDV 不编码 RNA 依赖性 RNA 聚合酶,但依赖宿主 DNA 依赖性 RNA 聚合酶将基因组转录并复制到靶细胞中 [10]。HDV 的基因组 RNA 通过滚环机制复制。尽管 HDV 在环状 RNA 基因组的存在和复制机制方面与类病毒相似,但 HDV 的基因组较大且能够编码蛋白质,这与类病毒有明显的不同 [11]。
摘要:对于新型无扰动有效载荷(DFP)航天器,由于脐带电缆的存在,低频扰动难以隔离,降低了有效载荷的指向精度和稳定性。本研究设计了一种改进的DFP航天器及其集成控制方案,以提高指向精度和扰动衰减性能。改进的DFP航天器由有效载荷模块(PM)、支撑模块(SM)和测试质量(TM)组成。集成控制系统细分为三个相互连接的控制回路。主动隔振控制回路用于将PM与高频带的扰动隔离,并控制PM跟踪SM的姿态。无拖曳控制回路用于将SM与低频带的扰动隔离,并控制SM跟踪TM的姿态。姿态指向控制回路用于控制TM跟踪期望姿态。基于改进的DFP航天器和综合控制系统,PM上搭载的有效载荷可以在所有频段内隔离干扰,并能实现其高水平的指向精度和稳定性要求。
电力系统规模从小型微电网到孤岛系统再到大型区域电网不等,通常由中央控制器管理,中央控制器需要复杂的通信方法,并且可能不可靠,在某些应用中会带来网络安全风险,尤其是在控制大量节点时。我们提出了一种本质上稳健、可扩展的集成方法,使用多个储能系统和分布式能源,不需要任何专用通信手段。这种方法超越了将电网频率控制在固定值(例如 60 Hz)的范式,而是允许频率在一定范围内波动(例如 59.6-60.4 Hz)。有了更大的工作范围,频率可以携带必要的信息,从储能系统到变化很大的分布式能源,如光伏、风能、水力发电等。
1 CAS量子信息信息实验室,中国科学技术大学,Hefei 230026,中华人民共和国2 CAS量子信息与量子物理学卓越卓越中心,中国科学技术大学,230026,Hefei 230026,中国人民共和国3,化学研究所3,耶路撒冷大学,耶路撒大学,耶路撒大学。加利福尼亚大学的物理学,圣塔芭芭拉,加利福尼亚州93106,美利坚合众国5菲西卡学院gal。Milton Tavares de Souza s/n,Gragoatá,24210-346 Niter´Oi,Rio de Janeiro,巴西,巴西6 DepratimentodeFísica,联邦联邦政府De s〜ao Carlos,Rodovia WashingtonLuís,spsp-sp-35-sp-sp-310,135565-955-9565-95-95-95-95-95-95-95-95-95-95-95-95-95-95-95-905-905-905-905 SO.任何信件应被解决。7这些作者对这项工作也同样贡献。
摘要:分销网络中可再生能源资源(RER)的增加集成形成了网络可再生能源资源(NRERS)。合作对等(P2P)控制体系结构能够充分利用NRER的韧性和灵活性。本研究提出了一个多代理系统,以实现基于NRER的物联网(IoT)的P2P控制。控制系统已完全分布,并包含在每个RER代理中操作的两个控制层。对于主要控制,每个RER-ANTENT都采用下垂控制,以用于本地功率共享。对于二级控制,提出了分布式扩散算法以在RER之间进行任意幂共享。实施了建议的级别通信系统来解释分布网络系统和云服务器之间的数据交换。本地通信级别利用Internet协议(IP)/传输控制协议(TCP),消息排队遥测传输(MQTT)用作全球通信级别的协议。通过修改IEEE 9节点测试馈线的数值仿真来验证所提出系统的有效性。本文提出的控制器为该系统节省了20.65%的节省,光伏25.99%,柴油发电机的35.52节省为35.52,电池24.59,功率损失为52.34%。
Áine Byrne 标题:消除与缓解:控制 COVID-19 的最佳策略是什么? 摘要:我们制定了一个控制爱尔兰 COVID-19 疫情的最佳控制问题。使用标准的多室 SEIR 模型,我们将该模型拟合到爱尔兰疫情的第一波(2020 年 3 月至 5 月)。然后,我们调查反事实情景,目的是找到控制疫情的最佳策略。我们专注于与减少社交接触相对应的非药物控制。我们还施加了国家限制,以确保 ICU 容量不超过上限。控制措施需要经济成本,我们力求在满足国家限制的同时尽量降低这一成本。我们的结果主张消除而不是缓解,即严格的封锁以根除病毒比减少病毒传播的长期限制更具成本效益。