1 CAS量子信息信息实验室,中国科学技术大学,Hefei 230026,中华人民共和国2 CAS量子信息与量子物理学卓越卓越中心,中国科学技术大学,230026,Hefei 230026,中国人民共和国3,化学研究所3,耶路撒冷大学,耶路撒大学,耶路撒大学。加利福尼亚大学的物理学,圣塔芭芭拉,加利福尼亚州93106,美利坚合众国5菲西卡学院gal。Milton Tavares de Souza s/n,Gragoatá,24210-346 Niter´Oi,Rio de Janeiro,巴西,巴西6 DepratimentodeFísica,联邦联邦政府De s〜ao Carlos,Rodovia WashingtonLuís,spsp-sp-35-sp-sp-310,135565-955-9565-95-95-95-95-95-95-95-95-95-95-95-95-95-95-95-905-905-905-905 SO.任何信件应被解决。7这些作者对这项工作也同样贡献。
埃克塞特大学和瓦格宁根大学的这项新研究研究了腺菌细菌如何影响蚊子幼虫的发展。结果表明,Asaia一天将开发时间加速了,这可能会促进需要生产数百万成人的质量养育方案。
摘要:对于新型无扰动有效载荷(DFP)航天器,由于脐带电缆的存在,低频扰动难以隔离,降低了有效载荷的指向精度和稳定性。本研究设计了一种改进的DFP航天器及其集成控制方案,以提高指向精度和扰动衰减性能。改进的DFP航天器由有效载荷模块(PM)、支撑模块(SM)和测试质量(TM)组成。集成控制系统细分为三个相互连接的控制回路。主动隔振控制回路用于将PM与高频带的扰动隔离,并控制PM跟踪SM的姿态。无拖曳控制回路用于将SM与低频带的扰动隔离,并控制SM跟踪TM的姿态。姿态指向控制回路用于控制TM跟踪期望姿态。基于改进的DFP航天器和综合控制系统,PM上搭载的有效载荷可以在所有频段内隔离干扰,并能实现其高水平的指向精度和稳定性要求。
本文介绍了一种用于无人机 (UAV) 舰载着陆的 L 1 自适应控制器,该控制器增强了动态逆控制器。三轴和功率补偿器 NDI (非线性动态逆) 控制器作为此架构的基线控制器。内环命令输入是滚转速率、俯仰速率、偏航速率和推力命令。外环命令输入来自制导律,用于校正下滑道。然而,不完善的模型逆和不准确的气动数据可能会导致性能下降,并可能导致舰载着陆失败。L 1 自适应控制器被设计为增强控制器,以解决匹配和不匹配的系统不确定性。通过蒙特卡罗模拟检查了控制器的性能,显示了基于非线性动态逆开发的 L 1 自适应控制方案的有效性。
区块链通常用于访问控制中,以提供安全的医疗数据交换,因为权力下放,无耐受性和可追溯性的特征。患者通过授予用户或医疗机构的访问权利来共享个人健康数据。现有访问控制技术的主要目的是确定允许访问医疗数据的用户。他们几乎从未认识到合法实体的内部攻击者。医疗数据将涉及授权组织中的多层访问。考虑权限管理的成本和内部恶意节点攻击的问题,用户希望在授权机构内实施授权约束。它可以防止他们的数据被不同授权医疗领域的最终用户披露。为了实现共享机构中医学数据的细粒度权限传播控制,本研究建议基于信任的授权访问控制机制。信任阈值根据其灵敏度分配给不同的特权,并用于生成零知识证明,以在区块链节点之间播放。此方法通过动态信任计算模型评估每个用户的信任。和同时,使用智能合约来验证用户的信任是否可以激活某些许可,并确保用户在授权验证过程中信任的隐私。此外,用户和机构之间的授权交易记录在区块链上,以实现患者的可追溯性和问责制。通过全面的比较和广泛的实验来证明该方案的可行性和有效性。
供应链融资(SCF)为中小型企业(中小企业)提供信用,信用额度低和融资量表。由此产生的财务信贷数据和相关的业务交易数据是高度机密和私人的。但是,传统的SCF管理方案使用第三方平台和集中式设计,这些设计无法获得高度可靠的安全存储和细粒度的访问控制。为了满足这种需求,我们提出了Fabric-SCF,通过UTI-Lizing分布式共识来设计和实施基于区块链的安全存储系统,以实现数据安全性,可追溯性和不变性。基于属性的访问控制(ABAC)模型被部署用于访问控制,还利用智能合约来定义系统流程和访问策略,以确保系统的有效操作。为了验证织物-SCF的性能,设计了两组仿真实验的有效性。实验结果表明
摘要:分销网络中可再生能源资源(RER)的增加集成形成了网络可再生能源资源(NRERS)。合作对等(P2P)控制体系结构能够充分利用NRER的韧性和灵活性。本研究提出了一个多代理系统,以实现基于NRER的物联网(IoT)的P2P控制。控制系统已完全分布,并包含在每个RER代理中操作的两个控制层。对于主要控制,每个RER-ANTENT都采用下垂控制,以用于本地功率共享。对于二级控制,提出了分布式扩散算法以在RER之间进行任意幂共享。实施了建议的级别通信系统来解释分布网络系统和云服务器之间的数据交换。本地通信级别利用Internet协议(IP)/传输控制协议(TCP),消息排队遥测传输(MQTT)用作全球通信级别的协议。通过修改IEEE 9节点测试馈线的数值仿真来验证所提出系统的有效性。本文提出的控制器为该系统节省了20.65%的节省,光伏25.99%,柴油发电机的35.52节省为35.52,电池24.59,功率损失为52.34%。
电力系统规模从小型微电网到孤岛系统再到大型区域电网不等,通常由中央控制器管理,中央控制器需要复杂的通信方法,并且可能不可靠,在某些应用中会带来网络安全风险,尤其是在控制大量节点时。我们提出了一种本质上稳健、可扩展的集成方法,使用多个储能系统和分布式能源,不需要任何专用通信手段。这种方法超越了将电网频率控制在固定值(例如 60 Hz)的范式,而是允许频率在一定范围内波动(例如 59.6-60.4 Hz)。有了更大的工作范围,频率可以携带必要的信息,从储能系统到变化很大的分布式能源,如光伏、风能、水力发电等。
摘要 间歇性可再生能源在微电网中的渗透率不断提高,带来了许多问题,例如随机发电、需求和供应不匹配、频率波动和经济调度问题。为了解决这些关键问题,提出了一种基于具有变化运营成本和间歇性可再生能源的微电网的分布式二次控制方案,用于频率调节和经济负荷调度。本文提出了一种自适应分布式平均积分控制方案,具有条件不确定性,即变化的运营成本和可再生能源间歇性。所提出的控制方案通过动态更新控制律参数来适应不确定性,并可以保持整个网络的稳定性。分布式控制方案使用通信通道来交换来自相邻发电单元的发电数据,以实现发电单元之间的最佳功率分配和共识。控制结构中还增加了分层控制架构三级控制层的附加控制器,以经济地调度负载,基于共识的算法保证了最佳负载分配。所提出的基于通信的控制方案展现了性能和灵活性的最佳组合。还进行了基于性能的比较分析,验证了所提控制方案与先前研究相比的有效性。通过计算机模拟说明了所提控制方案的稳健性和性能。
摘要:汽车供应链数据的可靠循环对于汽车制造商和相关企业至关重要,因为它可以促进有效的供应链运营并增强其竞争力和可持续性。但是,随着隐私保护和信息安全问题的越来越重要,传统数据共享解决方案不再能够满足高度可靠的安全存储和灵活访问控制的要求。响应这一需求,我们根据企业级区块链平台HyperLeDger Fabric提出了供应链生态系统的安全数据存储和访问控制方案。设计包含用于访问控制的基于双层属性的可调访问控制模型,其中四个智能合约旨在协调和实施访问策略。实验结果表明,在大规模数据和多属性条件下,提出的方法具有显着优势。它可以在密文下启用细粒度的动态访问控制,并在模拟现实世界的操作场景中保持高吞吐量和安全性。