摘要:本文讨论了独立可再生能源系统的能源管理。该系统配置为微电网,包括光伏发电、铅酸电池作为短期储能系统、氢气生产和多个负载。在这个微电网中,采用了一种能源管理策略,该策略追求多个目标。一方面,它旨在最大限度地减少电池中循环的能量,以减少相关损耗和电池尺寸。另一方面,它试图利用长期剩余能源,生产氢气并从系统中提取,用于燃料电池混合动力电动汽车。这种方法的一个关键因素是使能源消耗适应能源需求,为了实现这一点,提出了一种模型预测控制 (MPC) 方案。在这种情况下,将介绍用于太阳能估计、氢气生产和电池储能的适当模型。此外,控制器能够提前或延迟可延迟负载的预定时间。结果,用相对较小的电池就能获得稳定、高效的供电。最后,所提出的控制方案已在实际案例中得到验证。
摘要 - 避免障碍物是自动驾驶的基本操作,其配方传统上源自机器人技术和决策控制领域。鉴于计算无障碍轨迹所需的高复杂性,通常需要对较低的频率计划层进行此操作,然后提供轨迹参考,然后是较高的频率控制层。每当需要重新启动时(例如,由于新检测到的障碍物),控制层必须等待生成新的计划轨迹。在本文中,我们提出了一种新颖的方法,以在控制层中避免障碍物,从而避免了求职者响应。尤其是我们展示了如何可以集成障碍物和参考跟踪,因此,在基于零空间的行为控制方法基于(可能是非线性)模型预测控制方案中实现的基于零空间的行为控制方法,无需在不同的控制器之间进行切换。我们证明了采用两种不同的车辆动态模型以及在四种不同(城市和高速公路)方案中使用的拟议方法论的实际实施。此外,我们提供了灵敏度分析,以了解参数选择如何影响自动化车辆行为。
准确稳定的航天器指向是许多天文观测的要求。特别挑战纳米卫星,因为表面积不利 - 质量比和甚至最小的态度控制系统所需的量。这项工作探讨了无执行器精度或执行器引起的干扰(例如抖动)不受限制的机构中对天体物理态度知识和控制的局限性。对原型6U立方体上的外部干扰进行了建模,并根据可用体积内的望远镜的可用恒星量和掌握限制感测知识计算。使用模型预测的控制方案集成了这些输入。对于1 Hz的简单测试用例,具有85毫米望远镜和单个11级恒星,可实现的身体指向预计为0.39弧秒。对于更一般的限制,可以整合可用的星光,可实现的态度感应大约为1毫米秒,这导致了应用控制模型后的20 milliarcseconds的预测身体指向精度。这些结果表明,在达到天体物理和环境限制之前,态度传感和控制系统的重大空间。
摘要 - 经常使用大量的板载传感器和应用程序,以支持自主驾驶功能。基于当前的研究,几乎没有对应用程序访问车辆内数据的工作。此外,大多数现有的自动驾驶操作系统都缺乏身份验证和加密单位。因此,申请可以过多地获取一致的信息,例如车辆位置和所有者偏好,甚至将其上传到云中,威胁到车辆的安全性和所有者的隐私。在这项研究中,我们提出了一种细粒度的访问控制方案,以限制应用程序对CAVS(FGAC-INCAVS)中数据的访问。首先,我们提出了一个由以下要素组成的系统模型:受信任的第三方(TTP),这是完全值得信赖的权威;感知组件(例如传感器),可以捕获道路信息(图片,视频等)。);和多个应用程序。然后,提出了一个基于快速属性的加密(ABE),安全分析还表明,它可以防止选择性和选择性攻击。此外,我们提出了一个基于中文剩余定理(CRT)的关键更新方案。最后,理论分析和仿真实验证明了其可行性和效率。
摘要:海上风能和波浪能等可再生能源资源对环境友好且无处不在。与使用单个资源相比,混合海上风浪能系统产生的能源形式更可持续,不仅环保,而且经济高效。本文的目的是详细回顾混合海上风浪能的联合发电技术。本综述论文的拟议领域是基于功率转换技术、响应耦合、联合发电和互补发电的控制方案以及共置和集成转换系统。本文旨在提供系统的综述,以涵盖新型混合海上风浪能 (HOWWE) 系统的最新研究和开发。当前的混合风浪能结构由于其设计和 AC-DC-AC 功率转换而缺乏效率,需要通过应用先进的控制策略进行改进。因此,使用不同的功率转换技术和控制系统方法,可以改进 HOWWE 结构,并将其转移到其他混合模型,例如混合太阳能和风能。本文回顾了最先进的 HOWWE 系统。对每种方法进行严格分析,以评估开发 HOWWE 系统的最佳组合。
本文介绍了一种光伏 (PV) 储能系统的综合设计和控制策略。该系统由一个 2kW 光伏系统、两个转换器电路、一个 6 欧姆的电阻负载和一个集成直流总线的锂离子电池存储组成,为电阻负载提供恒定功率。该方案提供了两种转换器拓扑,一种是升压转换器,另一种是 DC/DC 双向转换器。升压转换器直接串联连接到 PV 阵列,而双向 DC/DC 转换器 (BDC) 连接到电池。升压转换器用于调节 PV 阵列的最大功率点跟踪 (MPPT)。双向控制器的闭环控制采用 Takagi-Sugeno 模糊 (TS-Fuzzy) 控制器来实现,以调节电池充电和放电功率流。所提出的方案提供了良好的直流总线电压稳定性。给出了所提出的控制方案在 MATLAB/Simulink 下的仿真结果,并与比例积分 (PI) 控制器进行了比较。在实时数字模拟器(RTDS)上验证了MATLAB获得的仿真结果。
间歇性可再生能源占比高会导致频率波动,从而危及电网的持续运行。液态空气储能 (LAES) 是一种新兴技术,它不仅有助于能源部门脱碳,还具有提供可靠辅助服务的潜力。本文使用混合 LAES、风力涡轮机 (WT) 和电池储能系统 (BESS) 来研究它们在快速频率控制中的贡献。惯性控制、下垂控制和组合惯性和下垂项应用于混合可再生能源系统的每个源,并进行全面分析以研究它们对频率最低点改善的影响。分析表明,具有组合惯性和下垂控制项的 LAES 以及 WT 和 BESS 的惯性控制可提供可靠的频率控制。为了进一步改善频率最低点,提出了一种模糊控制并将其应用于 LAES。所提出的控制系统提供了更适应干扰的性能。此外,还进行了实验测试,以使用实时硬件在环测试台验证所提出的控制方法。模拟和实验结果表明,当实施可变增益控制方案时,混合可再生能源系统中的 LAES 可以显著有助于频率控制。
生物电化学储能 (BES) 系统能够将电能转化为生物甲烷,其结构类似于燃料电池,因为多个低压模块串联连接形成堆栈,然后并联以达到所需功率。然而,在这种情况下,BES 模块充当气体储能/负载,产生可储存的生物甲烷作为产品。本文提出了一种用于 BES 堆栈的多输出多级 AC/DC 电源转换系统。所提出的拓扑结构类似于模块化多级转换器 (MMC),其中 BES 堆栈连接到子模块,并且直流链路中仅存在一个电容器。因此,它只需要在交流侧使用一个小滤波器,同时可以同时控制所有 BES 堆栈的电压和功率。提出了所提出的电源转换系统的数学模型,然后设计了一种控制方案,以实现以下目标:1) 同时控制所有输出电压;2) 独立控制与电网交换的有功和无功功率;3) 控制电网电流的质量; 4) 抑制环流。为了验证系统性能,我们展示了从包含 18 个堆栈的 10 kW BES 系统获得的 OPAL-RT 实时模拟结果。© 2022 由 Elsevier Ltd. 出版。
精确而稳定的航天器指向是许多天文观测的必要条件。指向对纳米卫星尤其具有挑战性,因为即使是最小的姿态控制系统也需要不利的表面积与质量比和成比例的大体积。这项工作探索了在不受执行器精度或执行器引起的抖动等干扰限制的状态下天体物理姿态知识和控制的局限性。对原型 6U 立方体卫星上的外部干扰进行了建模,并根据可用恒星通量和可用体积内望远镜的抓取来计算极限传感知识。这些输入使用模型预测控制方案进行集成。对于 1 Hz 的简单测试案例,使用 85 毫米望远镜和一颗 11 等星,可实现的天体指向预计为 0.39 角秒。对于更一般的限制,结合可用的星光,可实现的姿态传感约为 1 毫角秒,应用控制模型后,可预测的物体指向精度为 20 毫角秒。这些结果表明,在达到天体物理和环境极限之前,姿态传感和控制系统还有很大的改进空间。
MA 02 高级系列是四分之一回转电动工业服务执行器,在 12vdc、24vac/vdc 或 92~265vac 型号中提供高达 177”lbs 的扭矩,并提供 2 位置(打开/关闭)、浮动(打开/关闭/点动)或调制(4-20mA 默认或 2-10vdc)控制方案。高级型号无需卸下盖子即可设置行程停止,可通过 OLED 菜单功能进行软设置。其他参数也可通过相同的菜单程序访问。(2) A 型(常开)辅助开关和内部防凝加热器是标准配置。主要特点包括:• 24 伏型号采用交流或直流电源供电。• 120vac 和 230vac(自动切换)型号采用 50 或 60Hz 电源供电。 • 3D 凸起位置指示器 • 附带 3m 预接线现场接口电缆 • 顶部安装 4mm 手动超控插座,方便使用。 • M10 镀镍黄铜电缆密封套 (x1) • MAR02R 具有高速功能 • MAR02R 具有电子故障安全功能