本文提出了针对非BOLONOMIC车辆的稳定跟踪控制规则。通过使用Liapunov函数来证明该规则的稳定性。对车辆的输入是参考姿势(x,y ,, 8)'和参考速度(v,ar)'。本文的主要目的是提出一个控制规则,以找到合理的目标线性和旋转速度(v,a)'。线性化系统的微分方程对于确定对小干扰的关键倾倒参数很有用。为了避免任何滑倒,引入了速度/加速度限制方案。有或没有速度/加速度限制器的几个合理结果。本文提出的控制规则和限制方法是与机器人无关的,因此可以应用于具有死亡算力能力的各种移动机器人。此方法是在自动移动机器人Yamabico-11上实现的。获得的实验结果接近速度/加速度限制器的结果。
摘要 - 共享的控制方法在苛刻的任务中分配了人类操作员和机器人之间的控制,从而使协作能够利用各自的优势和专业知识。共享任务通常涉及将人类控制输入与(预算计划的辅助轨迹结合在一起的算法)的混合算法。传统的混合技术(例如线性混合)计算组合输出,但不能保证这种共享运动的可行性,也不能确保遵守安全性或与任务相关的约束。本文提议通过将混合策略作为解决最佳控制问题的解决方案来解决可行性和安全性,从而实施环境限制,任务要求和物理能力。使用模型预测控制方法来解决优化问题,并通过预测回收时间范围内的机器人运动来预测约束。我们在模拟和现实世界的拾取和地距离传统实验中评估了这种方法。实验研究将模型预测控制方法与线性混合和完整的近距离进行了比较。结果表明,新框架提供了重大改进,因为它提供了更安全,更准确和可重复的响应。
Romain Mathieu,Olivier Briat,Philippe Gyan,Jean-Michel Vinassa。在电荷方案和温度的几个参数下,快速充电对三个锂离子细胞周期寿命的影响的比较。应用能量,2021,283,pp.116344。10.1016/j.apenergy.2020.116344。hal- 04087500
大型孔径天线不仅可以为传统的通信服务和雷达提供帮助,还可以实现新的通信,遥感,深空探测和电力传输航天器的新方法。较高的天线孔可保证更高的信号分辨率和信噪比,而其精度则驱动其空间分辨率和灵敏度。在过去,开发高孔径天线是一项技术挑战,受到高刚度和重组件而针对发射限制的部署的限制,但最近在轨道上自主制造和组装方面的进步为直接在太空中直接开发的大型和光线结构的发展打开了大门。但是,如果许多文献中的许多作品都集中在空间中的大型天线制造上,那么[1]中的许多工程挑战,例如表面准确性,航天器稳定性和部署可靠性,仍然对这些技术的实际去风险施加限制。拟议的项目具有提出大型天线的欧洲端到端轨内组装方案的发展,并通过小规模的实验基准表明其关键技术挑战。通过利用团队中可用的技能建模和控制大型柔性结构[2,3]和天线技术[4,5],该项目将重点放在:
摘要 - 多种机器人系统在医学,环境监测等各种领域的多种影响都增加了。尽管有明显的优势,但群体的协调对人类运营商带来了重大挑战,尤其是关于有效控制机器人所需的认知负担。在这项研究中,我们提出了一种新的方法,可以使人类操作员有效控制多个机器人的运动。利用共享控制数据驱动的方法,我们使单个用户能够控制与群体的姿势和形状相关的9度自由度。我们的方法是通过在模拟的3D环境中进行的实验运动进行了评估的,该环境具有狭窄的圆柱路径,可以代表例如血管,工业管道。使用经验后的问卷评估了认知载荷的主观测量,并比较了系统的不同级别的自主权。结果表明,与传统的远程操作技术相比,操作员认知负载的大幅减少,伴随着任务绩效的提高,包括减少完成时间和与障碍的接触实例更少。这项研究强调了我们方法在增强人类机器人相互作用和提高多机器人系统中运行效率方面的效率。
摘要。增材制造不仅在制造业,而且在消费市场也越来越受欢迎,因为它提供了一个全新的机遇世界,首先是几何约束的缺失,以及由于减材制造中典型的材料去除而产生的浪费的减少。此外,它能够增强精益制造的目标,即减少对客户没有任何价值的活动。然而,由于缺乏一致的质量,其广泛的应用受到威胁。因此,有必要进一步研究影响 3D 打印产品的缺陷并提出新的控制方法。本文建议使用一种低成本、轻便、便携的设备作为扫描仪,以快速获取 3D 打印产品的数据并将其与原始模型进行比较。
摘要:可再生能源耦合制氢技术可在一定程度上克服可再生能源随机性、间歇性的弱点,但由于可再生能源发电机组与主网长距离、反向分布,高比例电力电子制氢系统与电网互联时存在振荡不稳定的风险。首先,建立电力电子制氢系统阻抗模型,分析与电网互联的制氢系统振荡特性。其次,分析电解水制氢系统对多能源系统稳定性的影响,研究输入功率波动、产氢速率变化引起的不稳定问题。然后,提出一种基于功率分配的可再生能源制氢系统振荡抑制策略,用于增强电解水制氢系统多能源系统的稳定性。最后,通过建立可再生能源电解水制氢实验模拟系统。验证了不同可再生能源出力波动、不同系统阻抗条件下系统频率稳定性,仿真结果表明,提出的基于功率分配的多能源制氢控制方法能够保证可再生能源出力波动下系统的稳定性。
在2016年,新西兰政府设定了雄心勃勃的目标,即在2050年到2050年 - 捕食者免费2020年(PF2050,以下称),消除主要的侵入性掠夺性哺乳动物。这些物种包括三个芥末:雪貂(Mustela putorius furo),Stoats(M。Erminea)和鼬鼠(M. nivalis);三只大鼠:船只(Rattus rattus),挪威大鼠(R. Norvegicus)和Kiore(R。Exulans)和刷尾巴鼠(Trichosurus vulpecula)(Russell et al。2015;欧文斯2017)。在这个全国范围内消除了侵入性掠食者,从未尝试过,并且传统工具包被认为是不可能的。因此,如果要成功,我们需要大量的技术,运营和社会进步(Owens 2017; Tompkins 2018; Murphy等人。2019; Peltzer等。2019;罗斯等。2020)。
摘要:本文提出了一种新颖的需求侧管理 (DSM) 系统,旨在使用模型预测控制 (MPC) 优化公共站的电动汽车 (EV) 充电。该系统可根据实时电网状况、电价和用户偏好进行调整,为智能城市基础设施中的能源分配提供动态方法。这项研究的重点是减少峰值负荷和提高电网稳定性,同时最大限度地降低最终用户的充电成本。在各种情况下进行了模拟,证明了所提出的系统在缓解峰值需求和优化能源使用方面的有效性。此外,该系统的灵活性使得能够调整充电时间表以满足电网要求和用户需求,使其成为智能城市发展的可扩展解决方案。然而,目前的局限性包括假设统一关税和缺乏可再生能源考虑,这两者在实际应用中都至关重要。未来的研究将侧重于解决这些问题、提高可扩展性和整合可再生能源。所提出的框架代表了向城市环境中的高效能源管理迈出的重要一步,有助于节约成本和实现环境可持续性。