课程运输电气化的概述,其中包括汽车和航空航天需要高效率并更好地控制的电动驱动器。 永久磁铁同步电动机(PMSM)具有高功率密度,结构简单,高功率因数和小尺寸,使其非常适合电动汽车的牵引力。 汽车和航空航天中新兴应用的急剧要求要求进一步优化PMSM的电磁设计。 有限元分析(FEA)是一种工具,有助于设计优化高性能的电机(例如PMSMS)。 它也可以用来预测和了解永久磁铁同步电动机(PMSM)在各种物理条件下的行为。 在最近的过去,为控制PMSM的控制而开发了许多方法。 面向场的控制(FOC)和直接扭矩控制(DTC)是用于PMSM的两种主要控制方法。 由于数字信号处理领域的进步,已经有可能实现非线性控制方案(例如模型预测性控制(MPC))。 尽管具有预先控制的PMSM驱动器具有巨大的运输电气化潜力,但仍需要进一步的研究和知识库创建,以将现有的应用程序思想发展为可靠,具有成本效益的功能性产品。 对电气工程专业学生的PMSM设计和控制方法的强大基本知识对于提高运输电气化至关重要。 课程的主要目标如下:课程运输电气化的概述,其中包括汽车和航空航天需要高效率并更好地控制的电动驱动器。永久磁铁同步电动机(PMSM)具有高功率密度,结构简单,高功率因数和小尺寸,使其非常适合电动汽车的牵引力。汽车和航空航天中新兴应用的急剧要求要求进一步优化PMSM的电磁设计。有限元分析(FEA)是一种工具,有助于设计优化高性能的电机(例如PMSMS)。它也可以用来预测和了解永久磁铁同步电动机(PMSM)在各种物理条件下的行为。在最近的过去,为控制PMSM的控制而开发了许多方法。面向场的控制(FOC)和直接扭矩控制(DTC)是用于PMSM的两种主要控制方法。由于数字信号处理领域的进步,已经有可能实现非线性控制方案(例如模型预测性控制(MPC))。尽管具有预先控制的PMSM驱动器具有巨大的运输电气化潜力,但仍需要进一步的研究和知识库创建,以将现有的应用程序思想发展为可靠,具有成本效益的功能性产品。对电气工程专业学生的PMSM设计和控制方法的强大基本知识对于提高运输电气化至关重要。课程的主要目标如下:本Gian课程的目的是在工程师和研究学者中创建如此知识基础和意识。
摘要 — 空间天气大气可重构多尺度实验 (SWARM-EX) 是一种分布式大气物理学仪器,由三个在低地球轨道运行的 3U 立方体卫星组成。在美国国家科学基金会和美国宇航局立方体卫星发射计划的支持下,SWARM-EX 旨在实现一系列具有挑战性的科学和工程目标。该任务的科学目标集中在通过使用每个航天器上的通量探测实验和平面朗缪尔探针传感器对赤道热层异常和赤道电离层异常进行现场测量来解决悬而未决的大气物理学问题。工程目标集中在通过一系列演示和实验来推进立方体卫星集群的最新技术。本文介绍了三项创新,这些创新将使 SWARM-EX 能够克服其重大挑战。首先,将科学目标形式化为一系列主要科学问题和次要测量演示,然后将其转化为必须进行现场测量的空间和时间尺度。然后使用这些尺度来定义航天器必须达到的相对轨道几何形状。其次,引入一种制导、导航和控制系统,该系统能够获取和维持所需的相对轨道配置。所提出的系统只需要地面控制员的最少输入,在航天器间近距离分离时提供被动安全性,并且能够通过利用新颖的混合推进/差动阻力控制方法以最少的推进剂消耗有效地实现大型集群重构。第三,提出了一种操作概念,使任务目标能够以时间和推进剂的高效性实现,同时对在轨异常提供显著的容忍度。详细讨论了操作概念,包括 (1) 每个阶段要解决的具体任务目标、(2) 每个阶段以及阶段过渡期间要使用的控制方法,以及 (3) 按阶段划分的 ∆ v 预算及其获取方式的说明。介绍了控制方法的交易,以及管理集群操作时面临的一些具体挑战,因为集群之间的航天器间隔从数百米到数千公里不等。
Crazyflie 2.1 无刷套件是一款多功能开源飞行开发平台,重量仅为 32 克,可握在手掌中。无刷电机可提高灵活性并增强有效载荷能力。它配备了低延迟无线电和蓝牙 LE,允许使用各种控制方法,包括脚本和手动选项。定制设计的低转速螺旋桨可提供令人愉悦的噪音和高效率。
区域房间等效组件基板外部外部露台Underhang木材简介Lurie Terrace由1964年建造的一(1)个建筑物组成。服务经理应在社区经理的协助下实施铅危害控制计划(“ LHCP”)。服务经理应向社区经理报告要求根据LHCP采取行动的事件,以进行记录保存目的,以及该物业的维护总监,以进行质量保证和控制。此LHCP仅考虑临时控制方法。附录中提供了临时控制方法的详尽说明。施工董事应考虑在财产升级,翻新或重建期间的减排选择。在此属性上已经确定了正在进行的监视和维护铅涂料。Lurie Terrace Management应该继续监视铅涂料条件,并要求租户建议对任何恶化的油漆条件建议财产管理。油漆状况的变化可能是由于正常的磨损,常规操作和维护工作,修复和维修活动或建筑系统故障引起的。Lurie Terrace Management应使用铅安全工作实践迅速将任何恶化的铅涂料归还完整的条件。Lurie Terrace Management必须立即合并正在进行的铅基油漆维护
随着基于逆变器的可再生能源的渗透,深厚的增强学习(DRL)被认为是实现实时和自主控制的最有前途的解决方案之一,以实现未来的碳中性动力系统。尤其是对基于DRL的频率控制方法进行了广泛的研究,以克服基于模型的方法的局限性,例如大型系统的计算成本和可扩展性。尽管如此,基于DRL的频率控制方法的现实实施面临以下乐趣的挑战:1)在学习和决策过程中的安全保证; 2)针对动态系统操作条件的适应性。到此为止,这是提出适应性和安全认证的DRL(ADAPSAFE)算法的第一份用于频率控制的算法,以模拟上述挑战。在特殊的情况下,一种新型的自我调整控制屏障功能旨在积极补偿各种安全性限制下不安全的频率控制策略,从而实现了瓜兰安全性。此外,元提高学习的概念旨在显着增强其在非平稳电源系统环境中的适应性,而无需牺牲安全成本。实验是根据GB 2030功率系统进行的,结果表明,所提出的Adapsafe在训练和测试阶段的保证安全性方面表现出卓越的性能,以及其对系统参数动力学变化的相当适应性。
摘要:自动轮椅在仪器和控制方面发展起来,解决了身体残疾人的移动性问题。通过这项工作,旨在建立自动轮椅和原型的仪器和控制方法的背景,以及每个类别中的分类。为此,对2012年至2019年之间发表的文章进行了对专业数据库的搜索。在其中,根据包含和排除标准选择了97个文件。针对这些文章提出了以下类别:(a)轮椅仪器和控制方法,其中有一些系统可以实施微电机力学传感器(MEMS),表面肌电图(SEMG),电视学(EOG),电视学(EOG),电脑术(EEG)和语音认识系统; (b)轮椅仪器,其中包括发现障碍物检测系统,人工视觉(图像和视频)以及导航系统(GPS和GSM)。本综述中发现的结果倾向于使用EEG信号,头部移动,语音命令和算法以避免障碍。最常用的技术涉及使用经典控制和阈值来移动轮椅。此外,讨论主要基于用户的特征和控制类型。总而言之,这些文章在其设计中表现出了现有的局限性和可能的解决方案,并向物理残障社区告知了这一领域的技术发展。
✉信件和材料请求应发给Brian R. Shy或Alexander Marson。,Brian.shy@ucsf.edu; Alexander.marson@ucsf.edu。作者贡献B.R.S.,V.S.V.,J.H.E.和A.M.设计了研究。B.R.S.,V.S.V。 和A.H.进行了SSCTS实验。 B.R.S. 和V.S.V. 进行了抑制剂实验。 B.R.S. 和A.H.进行了ORF替换实验。 B.R.S. 和V.S.V. 进行了GMP-兼容的制造实验。 B.R.S.,V.S.V.,J.Y.J.C.,A.T.,J.E.,J.H.E.,T.G.M. 和J.W. 设计和执行了BCMA-CAR实验。 D.N.N进行了HSC实验。 Y.Y.C. 和F.B. 执行了合并的敲入实验。 s.v. 和M.R.M. 进行了γδT细胞实验。 L.Y. 设计并协调了单链DNA修复模板的大规模生产和下游纯化过程。 H.L. 监督ssDNA的监管要求和质量控制方法。 W.G.P. 和C.E.C. 进行了AFM研究。 T.L.R.,E.S.,R.Y。 和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。 B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。B.R.S.,V.S.V。和A.H.进行了SSCTS实验。B.R.S. 和V.S.V. 进行了抑制剂实验。 B.R.S. 和A.H.进行了ORF替换实验。 B.R.S. 和V.S.V. 进行了GMP-兼容的制造实验。 B.R.S.,V.S.V.,J.Y.J.C.,A.T.,J.E.,J.H.E.,T.G.M. 和J.W. 设计和执行了BCMA-CAR实验。 D.N.N进行了HSC实验。 Y.Y.C. 和F.B. 执行了合并的敲入实验。 s.v. 和M.R.M. 进行了γδT细胞实验。 L.Y. 设计并协调了单链DNA修复模板的大规模生产和下游纯化过程。 H.L. 监督ssDNA的监管要求和质量控制方法。 W.G.P. 和C.E.C. 进行了AFM研究。 T.L.R.,E.S.,R.Y。 和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。 B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。B.R.S.和V.S.V.进行了抑制剂实验。B.R.S. 和A.H.进行了ORF替换实验。 B.R.S. 和V.S.V. 进行了GMP-兼容的制造实验。 B.R.S.,V.S.V.,J.Y.J.C.,A.T.,J.E.,J.H.E.,T.G.M. 和J.W. 设计和执行了BCMA-CAR实验。 D.N.N进行了HSC实验。 Y.Y.C. 和F.B. 执行了合并的敲入实验。 s.v. 和M.R.M. 进行了γδT细胞实验。 L.Y. 设计并协调了单链DNA修复模板的大规模生产和下游纯化过程。 H.L. 监督ssDNA的监管要求和质量控制方法。 W.G.P. 和C.E.C. 进行了AFM研究。 T.L.R.,E.S.,R.Y。 和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。 B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。B.R.S.和A.H.进行了ORF替换实验。B.R.S. 和V.S.V. 进行了GMP-兼容的制造实验。 B.R.S.,V.S.V.,J.Y.J.C.,A.T.,J.E.,J.H.E.,T.G.M. 和J.W. 设计和执行了BCMA-CAR实验。 D.N.N进行了HSC实验。 Y.Y.C. 和F.B. 执行了合并的敲入实验。 s.v. 和M.R.M. 进行了γδT细胞实验。 L.Y. 设计并协调了单链DNA修复模板的大规模生产和下游纯化过程。 H.L. 监督ssDNA的监管要求和质量控制方法。 W.G.P. 和C.E.C. 进行了AFM研究。 T.L.R.,E.S.,R.Y。 和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。 B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。B.R.S.和V.S.V.进行了GMP-兼容的制造实验。B.R.S.,V.S.V.,J.Y.J.C.,A.T.,J.E.,J.H.E.,T.G.M. 和J.W. 设计和执行了BCMA-CAR实验。 D.N.N进行了HSC实验。 Y.Y.C. 和F.B. 执行了合并的敲入实验。 s.v. 和M.R.M. 进行了γδT细胞实验。 L.Y. 设计并协调了单链DNA修复模板的大规模生产和下游纯化过程。 H.L. 监督ssDNA的监管要求和质量控制方法。 W.G.P. 和C.E.C. 进行了AFM研究。 T.L.R.,E.S.,R.Y。 和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。 B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。B.R.S.,V.S.V.,J.Y.J.C.,A.T.,J.E.,J.H.E.,T.G.M.和J.W.设计和执行了BCMA-CAR实验。D.N.N进行了HSC实验。Y.Y.C. 和F.B. 执行了合并的敲入实验。 s.v. 和M.R.M. 进行了γδT细胞实验。 L.Y. 设计并协调了单链DNA修复模板的大规模生产和下游纯化过程。 H.L. 监督ssDNA的监管要求和质量控制方法。 W.G.P. 和C.E.C. 进行了AFM研究。 T.L.R.,E.S.,R.Y。 和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。 B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。Y.Y.C.和F.B.执行了合并的敲入实验。s.v.和M.R.M.进行了γδT细胞实验。L.Y. 设计并协调了单链DNA修复模板的大规模生产和下游纯化过程。 H.L. 监督ssDNA的监管要求和质量控制方法。 W.G.P. 和C.E.C. 进行了AFM研究。 T.L.R.,E.S.,R.Y。 和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。 B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。L.Y.设计并协调了单链DNA修复模板的大规模生产和下游纯化过程。H.L.监督ssDNA的监管要求和质量控制方法。W.G.P. 和C.E.C. 进行了AFM研究。 T.L.R.,E.S.,R.Y。 和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。 B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。W.G.P.和C.E.C.进行了AFM研究。T.L.R.,E.S.,R.Y。 和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。 B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。T.L.R.,E.S.,R.Y。和D.W.进行并分析了Amplicon-Seq,RNA-Seq和ATAC-Seq研究。B.R.S.,V.S.V。 和A.M.用所有作者的输入写了手稿。B.R.S.,V.S.V。和A.M.用所有作者的输入写了手稿。
•能够识别害虫植物物种。•具有各种害虫植物控制方法的经验•数据记录和管理技能•经验丰富的经验使用GPS导航。•适度的身体健康•1级驾驶执照•一个自我启动者,可以管理小型任务,但也喜欢作为团队成员或单独在办公室工作。•对健康和安全工作实践的坚定承诺,并能够在同事之间促进这种文化。理想的技能
摘要 - 智能钻孔寻求洞穴是一种有前途的技术,可提高钻孔效率,减轻潜在的安全危害并减轻人类操作员。大多数现有的智能钻臂控制方法依赖于基于反向运动学的分层控制框架。但是,由于反向运动学的计算复杂性以及多个关节的顺序执行效率低下,这些方法通常是耗时的。为了应对这些挑战,本研究提出了一种基于强化学习(RL)的综合钻孔控制方法。我们开发了一个集成的钻臂控制框架,该框架利用参数化策略在每个时间步骤中直接为所有关节生成控制输入,利用关节姿势和目标孔信息。通过将寻求洞穴的任务制定为马尔可夫决策过程,可以直接使用当代主流RL算法来学习寻求洞穴的政策,从而消除了对逆动力学解决方案的需求并促进合作的多关节控制。为了在整个钻井过程中提高钻孔精度,我们设计了一种结合Denavit-Hartenberg联合信息并预览寻求洞穴差异数据的状态表示。仿真结果表明,就寻求洞的准确性和时间效率而言,所提出的方法显着优于传统方法。索引术语 - 强化学习,集成的钻头控制,寻求孔,机器人臂
杂草侵扰对可持续农业构成了关键的挑战,导致农作物产量损失巨大,并使用化学除草剂的使用,这有助于环境降解和健康风险。杂草管理中最紧迫的问题之一是传统杂草控制方法的有效性下降,这些方法努力与日益增长的全球粮食需求以及预期人口到2050年所面临的挑战。重点是精确杂草管理(PWM),强调尖端技术,例如Com Puter Vision,无人驾驶飞机(UAV),GPS控制的补丁喷涂,激光处理和自动除草机器人。采用图像处理和深度学习的计算机视觉是自动杂草检测的关键参与者,挑战了传统的除草剂方法。配备高级传感器的无人机有助于及时进行干预措施。激光和热处理展示了针对性,有效的杂草控制,而自主除草机器人则体现了一种无提动手,精确的方法。这些技术的整合不仅承诺增强生产率,而且还表示全球农业中可持续和环保的转变。本文强调了传统的杂草控制方法的局限性,并强调了新兴技术革新杂草管理的潜力,提供精确,具有成本效益和环境精神友好的解决方案。